EternalPetya and the lost Salsa20 key

June 29, 2017 by Malwarebytes Labs

Last updated: July 4, 2017

We have recently been facing a huge outbreak of a new Petya-like malware armed with an
infector similar to WannaCry. The research is still in progress, and the full report will be
published soon.

In this post, we will focus on some new important aspects of the current malware. The low-level
attack works in the same style as the first Petya, described here. As before, the beginning of the
disk is overwritten by the malicious Petya kernel and bootloader. When the malicious kernel is
booted, it encrypts the Master File Table with Salsa20 and in this way, makes the disk
inaccessible.

The code from Petya’s kernel didn’t change much, but the new logic implemented in the
high-level part (the Windows executable) caused the change in the malware’s mission. In the
past, after paying the ransom, the Salsa key from the victim was restored and with its help, the

https://blog.malwarebytes.com/author/malwarebyteslabs/
https://blog.malwarebytes.com/author/malwarebyteslabs/
https://blog.malwarebytes.com/cybercrime/2017/06/petya-esque-ransomware-is-spreading-across-the-world/
https://blog.malwarebytes.com/cybercrime/2017/06/petya-esque-ransomware-is-spreading-across-the-world/
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://en.wikipedia.org/wiki/NTFS#Master_File_Table

Petya kernel was able to decrypt the Master File Table. Now, the necessary key seems to be
lost for eternity. Thus, the malware appears to have only damaging intentions.

Let’s have a look at the implementation and discuss the details.
Analyzed sample:

e 71b6a493388e7d0b40c83ce903bc6b04 — the main DLL
o f3471d609077479891218b0f93a77ceb — the low level part (Petya bootloader +
kernel)

[UPDATE] A small bug in the Salsa20 implementation has been found. Unfortunately, it
is not significant enough to help restoring the key.

How is the disk encrypted?

The low level attack affecting the Master File Table hasn’t changed since Goldeneye. It is
executed by the Petya kernel.

The Salsa20 algorithm that was implemented incorrectly in the early versions of Petya and
caused it to be cracked has been fixed in version 3 (read more here). Now it looks almost the
same as in Goldeneye (that was the 4th step in the evolution) and it does not seem to have any
significant bugs. Thus, once the data is encrypted, having the valid key is the only way to
restore it.

Here’s a comparison of the changes in the code between the current version and the Goldeneye
one.

https://en.wikipedia.org/wiki/NTFS#Master_File_Table
https://en.wikipedia.org/wiki/NTFS#Master_File_Table
https://www.virustotal.com/en/file/027cc450ef5f8c5f653329641ec1fed91f694e0d229928963b30f6b0d7d3a745/analysis/
https://virustotal.com/en/file/b5d2ad3c7758f58aa329243af4ce4a906771a1a199210ed0c61f82d47edb3b1d/analysis/1498584989/
https://twitter.com/hasherezade/status/881846324437581824
https://en.wikipedia.org/wiki/NTFS#Master_File_Table
https://en.wikipedia.org/wiki/NTFS#Master_File_Table
https://blog.malwarebytes.com/threat-analysis/2016/12/goldeneye-ransomware-the-petyamischa-combo-rebranded/
https://blog.malwarebytes.com/threat-analysis/2016/12/goldeneye-ransomware-the-petyamischa-combo-rebranded/
https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Salsa20
https://blog.malwarebytes.com/threat-analysis/2016/07/third-time-unlucky-improved-petya-is-out/
https://blog.malwarebytes.com/threat-analysis/2016/07/third-time-unlucky-improved-petya-is-out/
https://twitter.com/hasherezade/status/881855440275070981
https://twitter.com/hasherezade/status/881855440275070981
https://twitter.com/hasherezade/status/881855440275070981

similarity confide change EA primary namme primary EA secondary
1.00 FoaEE———— 000088 C4 sub_88C4 13 000888 C4
1.00 099 --e--e- 00008972 sub_8972 19 00088972
1.00 099 ------- 00008994 sub_8994 20 00058994
1.00 099 - 00008962 sub_89B2 21 000g89B2
1.00 099 - 000089 CA read_input 000889CA
1.00 099 - 00008464 sub_8AG4_23 00038464
1.00 o0RE- = 00008B9A sub_8B94 24 D003EE9A
1.00 pEg = 00008BF2 sub 8BF2_25 00088BF2
1.00 il o 00008C98 enc_dec_disk 00088C98
1.00 099 --e--e- 00009386 sub_9386_26 00089386
1.00 099 ------- 00009652 s20_hash 00089652
1.00 099 - 00009604 s20_expand_key 00089604
1.00 099 - 00009798 s20_crypt 00089798
1.00 099 - 00009398E sub 998E 36 0008998E
1.00 o0RE- = 000099FC subr 99FC 37 000899FC
1.00 pEg == 00008242 sub 8282 8§ 00088242
1.00 il e 000098 DG sub_9806_35 00089806
1.00 L Q000&FAS encrypt_mft 00088FAL
1.00 089 --eeee- 00008DE2 find_and_encrypt_mft 00088DE2
1.00 099 - 00008114 fake_chkdsk 00088114
1.00 (DGR 0000E212 display_reboot_request 00088212
1.00 HEDT—— 000085CE screen_output 000885CE
1.00 o0RE- = 00008726 sub 8726 12 00088726
1.00 pEg = 00008932 sub 8932 15 00088932
1.00 il o 00008454 sub_8A54 22 00088454
1.00 099 --e--e- 00009462 sub_9462 27 00089462
1.00 099 ------- 00009494 sub_9494 28 00059494
1.00 099 - 00009508 sub_95D8 31 00089508
1.00 099 - 000095EC sub 95EC_32 000895EC
1.00 099 - 00009628 s20_rev_little_endian 00089628
1.00 o0RE- = 00009878 suby 9878_33 00039878
1.00 pEg == 0000988C suby 989C 34 0008989 C
1.00 pag 00008684 display_strings 00038684
1.00 098 ------- 0000891E sub_891E 14 0008891E
1.00 098 ------- 00008948 sub_ 8948 16 00088948
1.00 098 ------- 00008950 sub_8950 17 00088950
1.00 098 - 00008964 sub_8964_18 00088964
1.00 088 -----e- 00008 C54 dizk_read_or_write 00088 C54A
1.00 088 ------- 00009518 sub 9518_29 00089518
1.00 psg 00009575 sub 9578 30 00089578
0.99 0.99 -I--E-- 00008426 main_info_screen Q0088426
sub_86E0_11 000886ED

Looking inside the code, we can see that the significant changes have been made only to the
elements responsible for displaying the screen with information.

800088426 main_info_screen proc near
Aa808 L4246

B88e8426 var_240= byte ptr -24Ch
A0Ae8L426 var_223= byte ptr -223h
A@ee8426 var 1E3= byte ptr -1E3h
aeae8L426 var_1A3= byte ptr -1A3h
80088426 var_ 4C= byte ptr -4Ch
g8ae8426 var_1= byte ptr -1
aaaasLs?6 arg_ 6= word ptr &
280888426 arg_2= byte ptr 6
AOA0R 426

Aaae8426 enter 24Ch, B
aaees42a push di

8000842B push 51

AaaB88L42C call sub_86EB
A888842F push 8

A0808431 push 1

A8888433 push 8

A88088435 push ' G

g00088437 lea ax, [bp+var_24C]
88088438 push ax
2888843C mov al, [bp+arg_2]

8808843F push ax

80088448 call disk read or_ write
aa8a8443 add Sp, BCh

88088446 push acAbGh

AA0AB4Y9 call display string
288a844C pop b=

aa8as844D push S8h ; "P'

9008844F push BFFDCh

28888451 call sub_B46A

2888845y add Sp, 4

88088457 push 9CcD6h ; “If you see this text, then your files..."
AeBeeBLASA call display string

Another subtle, yet interesting change is in the Salsa20 key expansion function. Although the
Salsa20 algorithm itself was not altered, there is one keyword that got changed in comparison to
the original version. This is the fragment of the current sample’s code:

:JCHUUU-TUUH

|seqgBBB:96DY enter 16h, @
|s5eqBon:96D8 push di

5eqB00:96D9 push si

[segAda:o26DA mou [bp+var_11], '1° ; -1nvald s3ct-id
!SEgﬂﬂﬂ:QﬁDE mou [bp+var_18], 'n°’
|5eqBBO:96E2 mou [bp+var_F], "v’'
|seqBOB:96EA mou [bp+var_E], "a’
iSEgﬂﬂﬂ:?ﬁEH mou [bp+var_D], "1°
|seqBBB:96EE mou [bp+var_B], "d’
[seqBAA:-96F2 mow [bp+var_RA], "
iEEgﬂﬂﬂ:?ﬁFﬁ mou [bp+var_9], 'S’
[segAd@:926FA mou [bp+var_8B], "3
[segAd@:96FE mou [bp+var_7], 'C’
|seqBon:9702 mou [bp+var_6], "t°
lseqAAA:-97 06 mou Al fer
iEEgﬂﬂﬂ:??ﬂB mou [bp+var_12], al
|seqBoB:97 0B mou [bp+var_5], al
seqBB@:97 BE mouv ali,. "3
ESEgﬂﬂﬂ:9?1ﬂ mou [bp+var_C], al
[segBAdO:-9713 mou [bp+var_4], al
[segAdO:-9716 mou [bp+var_3], "d’
|seqBO08:971A =0k di, di

And this is a corresponding fragment from Goldeneye:

JcHUUU-?UUH

segBBA:26DY enter 16h, @
seqBB88:926D8 push di

seqBB88:926D9 push 51

seqaaa:26DA mow [bpt+var_11], "%’
seqdaa:26DE mov [bp+var_18], "p°’
SseqAaa:96E2 mow [bp+var_F], "a’
seqBaa:26E6 mow [bp+var_E], 'n’
seqdaa:96EA mou [bpt+var_D], "d’
seqdad:96EE mou [bptvar_B], "3
Sseqdaa:96F2 mou [bpt+var_RA], "2'
seqdad:26F6 mou [bptvar_9], "'
seqdaa:26FA mou [bpt+var_8], 'b"
seqdad:96FE mou [bptvar_7¥], "y’
seqaaa-o7 ez mou [bptvar_6], "t
seqdaaz97 a6 mov al, ‘e’
seqdaa:o7es mou [bptvar_12], al
seqdaa:97 o8 mou [bptvar_5], al
ceqdaa:97eE mov al, " °
seq@@aa:971a mou [bpt+var_C], al
ceqaaazo713 mou [bp+var_4], al
ceqdad:9716 mou [bptvar_3], "k’
seqB@a:271A ®or di, di

Instead of the keyword typical for Salsa20 (“expand32-byte k*) we’ve got something custom:
“-1nvald s3ct-id” (that can be interpreted as: “invalid sector id”). As we confirmed, the change of
this keyword does not affect the strength of the crypto. However, it may be treated as a
message about the real intentions of the attackers.

https://github.com/alexwebr/salsa20/blob/master/salsa20.c#L121
https://github.com/alexwebr/salsa20/blob/master/salsa20.c#L121
https://github.com/alexwebr/salsa20/blob/master/salsa20.c#L121
https://github.com/alexwebr/salsa20/blob/master/salsa20.c#L121

How is the Salsa key generated?

Generating the Salsa key and the nonce, as before, is done by the PE file (in the higher level of
the infector), inside the function that is preparing the stub to be written on the disk beginning.

188681661 mov edi, 288h
18881666 push edi ; Size
18881667 lea eax, [ebp+uvar_ 998]
18881660 push 7 ; Val
1888166F push eax ; Dst
188601678 call memset
188681675 add esp, BCh
18881678 push 28h ; dulLen
1888167A lea eax, [ebp+key buffer] ; salsa Key - 32 byte
18881688 push eax s pbBuffer
18881681 mov [ebp+Buffer], 8
18881688 call get_random buffer
18881680 mov Fes, eax
188601692 test eax, eax
10881694 js loc_10861895
= L J
i =
1888169A push g ; duLen
1888169C lea eax, [ebp+nonce_buffer] ; random nonce - 8 byte
188816A2 push eax s pbBuffer
188816A3 call get_random_buffer
188816A8 mov res, eax
188816AD0 test Pax, eax
108816AF js loc_1868681895
Y
I
188816B5 push 22h ; Size
188816B7 lea eax, [ebp+var_36F]
188816BD push offset atmz7153hmuxxtu ; " 1Hz7153HMUzETURZR1E78nGEdzantNbBWR™

In all versions of Petya, a secure random generator was used. We can find it in the current
version as well—it uses CryptGenRandom.

int _ stdcall lget_random _buffer(BYTE x=buffer, DWORD dwlLen)
{
int vw2; /7 eax@?
int vd; /7 eax@6
HCRYPTPROU phProv; /f [sp+Ch] [bp-&h]i1

phProv = B;

if { CryptAcquireContextA{&phProv, 8, B8, 1u, BxFOABBB00))
goto LABEL_14;

u2 = GetLastError(};

if (v2 > @8)
u? = {unsigned inti6)v? | BxB0A70000;

res = y2,;
if v?2 >= 8)
{
LABEL 14:
if (*CryptGenRandom({phProv, dwlen, buffer) }
{

u3 = GetLastError();
if { v3d > 8)
v3d = (unsigned int16)vd | Bx8868700080;
res = uij;
e
s
if (phProv)
CryptReleaseContext{phProv, 8});
return res;

-

The generated Salsa key and nonce are stored in the dedicated sector for further use by the
kernel during encryption.

Example of the stored data:

is_encrypted?

000040D0
000040EQ

51 50 68 44 58 55 76 51 70 53 58 34 5A hAcQPhDEUvODSE4Z
€T 77 00 00 0D 00 0O 0O OO OO 00 OO 0D 3Rfgw...........

00003FFOD 00 G0 00 00 00 00 00 00 00 00 00 00 00 00 +cuuuueeeeennn.
00004000) FE F2 0D 72 92 CC SE &F 01 15 78 93 07 o PR aais Sector 32
00004010 1 92 &8 A8 EF 91 AD 10 78 CF 18 02 7C C5 37 [FEia Rt aiues NN EE
00004020 D2 71 42 E4 00 F8 05 31 4D 7A 37 31 35 33 |HEWCEEWEMNMz7153 “salsa key
00004030 75 78 58 54 75 52 32 52 31 74 37 38 6D 47 HMuxXTuR2R1t7EmG, nonce
00004040 TA 61 41 74 4E €2 42 57 58 00 00 00 00 00 SdzaArNbEWK..... S,
00004050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +veununeeeeennnn
00004060 0D 00 00 00 00 00 00 00 00 00 00 00 00 00 «vcuuuneeeenennn.
00004070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «vcuunneeeeennn.
00004080 00 Q0 00 00 00 00 00 00 00 00 00 00 00 00 +veueuneeeeennns
00004090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 «vcuunneeeeennn.
00004020 00 00 00 00 00 00 00 71 56 62 6E 64 42 70 .oovvn... gvbndEp
00004080 53 73 6B 52 4A SA 4A 35 51 53 51 34 6E 41 6WYskRJZJISQSQ4na Victim ID
000040C0 38 6F 6D 51 79 4D 33 TA 4A 4C €4 4D 48 58 (S8omQyM3zJLAMHX

63

66

The byte at the offset 0x4000 is the flag: 0 means that the disk is not encrypted yet, 1 means
encrypted.

From the offset 0x4001, the Salsa20 key starts. It is 32 bytes long. After that, at offset 0x4021
there is the random Salsa20 nonce.

What happens with the Salsa key after the encryption?

After being read and used for the encrypting algorithm, the stored Salsa key is erased from the
disk. You can see the comparison of the disk image before and after the encryption phase.

3FFE: 00.00 00 00 00 00 Q0 00 |_...oo-- 4 {|2FFB: 00 00.00 00 00 Q00 00 Q0 J.o-o-----
4000: 00 3D FE E2 0D 72 52 OC .=;ﬁ.r'§ 4000: 01 00 00 00 00O 0O OO 0O |.

J00B: SE &F 0115 7B S3-07 0C |[~o..x™.. 4008: 00 00 .00 00 0O 00 OO 00 |.

4010z 3E 61 32 6B AB EE 21 AR |>a"h 'd’'— 4010: 00 0000 0D 0000 0000 fo-oooiic
4018z 10 7B CF 19 oA 7C C5 33 I.{i..IfS 4018: 00 0000 00 -00-00 0600 fooocoos
4020: EO0 E1 02 71 42 E4 0% FB |fa.gBa.% 4020: 00 E1 02 71 42 E4 03 F8 |.&.gB&a.f
4028: 05 31 4D 7a& 37 31 35 33 |.1M=z7153 4028: 05 31 4D 7TA 37 31 35 33 | .1M=zT153
4030: 48 4D 75 78 58 54 75 52 |HMuxXTuR 4030: 48 4D 75 T8 58 54 V5 52 |HMuxXTuR
4038: 32 52 31 74 37 38 6D 47 |ZR1t7Em: 4038: 32 52 31 T4 37 38 €D 47 |ZR1tTEm:
4040: 53 64 TRA €l 41 74 4E &2 |SdzaiAtlb 4040: 53 &4 Th €1 41 74 4E &2 |SdzaiAtNb
4048: 42 57 5B 00 00 00 00 00 |BWX..... 4045: 42 57 58 00 00 00 00 00 |BWX.....
4050z 00 00 OO 00 00 00 80 00 |.....c-- 4050: 00 00 00 Q00 00 OO0 00 00 |.o_-ooo-.

As you can see, after use the key is erased.

What is the relationship between the victim ID and the Salsa key?

In the previous versions of Petya, the victim ID was, in fact, the victim’'s Salsa20 key, encrypted
with the attacker’s public key and converted to Base58 string. So, although the Salsa key is
erased from the disk, a backup was still there, accessible only to the attackers, who had the
private key to decrypt it.

Now, it is no longer true. The victim ID is generated randomly, BEFORE the random Salsa key
is even made. So, in the current version, the relationship of the Salsa key and the victim ID is
none. The victim ID is just trash. You can see the process of generating it on the video.

After the reboot from the infected disk, we can confirm that the random string generated before
Salsa key and nonce is the same as the one displayed on the screen as the victim ID (“personal
installation key”):

Ooops, your important files are enc

If you see this text, then your files are no longer accessible, because they
have been encrypted. Perhaps you are busy looking for a way to recover your
fi but don't waste your time. HNobody can recover your files without our
decryption serwvice.

We guarantee that you can recover all your files safely and easily. All you
need to do is submit the payment and purchase the decryption key.

Please follow the instructions:
1. Send $300 worth of Bitcoin to following address:

1Mz 7 153HHu=xXTuRZ2R1t78mG5dzaAtNbBLX

3end your Bitcoin wallet ID and personal installation key to e-mail
wowsmithlZ3456@posteo.net. Your personal installation key:

EBuw?Yc-aNgDoy-SUcKx6-wYLzt3-h4eRcJ-R3f 3af-Ft9xe j-Kk4vs3-LtUEJJ-EBNGoA

If you already purchazed your key, pleasze enter it below.
Key:

Conclusion

According to our current knowledge, the malware is intentionally corrupt in a way that the Salsa
key was never meant to be restored. Nevertheless, it is still effective in making people pay
ransom. We have observed that new payments are being made to the bitcoin account. You can
see the link to the bitcoin address here:
https://blockchain.info/address/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX

Transactions (Oldest First Silter -

2017-06-28 11:51:41

2017-06-28 11:51:11

=

If you are a victim of this malware and you are thinking about paying the ransom, we warn you:
Don’t do this. It is a scam and you will most probably never get your data back.

https://blockchain.info/address/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX
https://blockchain.info/address/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX

We will keep you posted with the updates about our findings.

