

LatentBot piece by piece
June 8, 2017 by​ ​Malwarebytes Labs

Last updated: June 14, 2017

LatentBot is a multi-modular Trojan written in Delphi and known to have been around since
2013. Recently, we captured and dissected a sample distributed by RIG Exploit Kit.

The main executable is a persistent botnet agent which downloads additional modules and
reports about the performed activities to its Command and Control server. Depending on the
modules that have been installed, LatentBot has various capabilities, including:

● Act as a keylogger and form grabber
● Steal cookies
● Run a Socks Proxy from the victim system
● Give remote access to the attacker (VNC / Remote Desktop)

In this post we will describe those modules by taking apart several layers of obfuscation and
encryption in order to reveal their true nature.

Analyzed samples

https://blog.malwarebytes.com/author/malwarebyteslabs/
https://blog.malwarebytes.com/author/malwarebyteslabs/

● 011077a7960fa1a7906323dbdc7e3807​ – original sample, distributed in the campaign
○ 85dcf88487ea412fe4960494713eed6b​ – unpacked (loader)

■ 60c3232b90c773ed9c4990da7cc3bbdb​ – injected into ​svchost
■ e105d87cb79ed668c8b62297259a4dbb​ – injected into ​iexplore

Downloaded modules, injected into ​svchost​:

● e3fb224201592c02b6250532e99416f0​ – main module
○ fcf8479361a24618c3e4aa552dccfc33​ – module #1
○ 2268f50ac4bbd7002f6601568448e1d3​ – module #2
○ f461c9a2e1010aae1ad6ade8cf9396e5​ – module #3
○ 5cb8d981574da528b5f65aa9b2163eb3​ – module #4
○ 5803cab0bec92f21d3c3d22f7920eca0​ – module #5
○ 5fd5b8ae1ae41a620a32f4ce96638ab9​ – module #6

Behavioral analysis

After being deployed. the original sample installs itself and deletes the sample from the original
location. It injects into ​svchost​ the initial module (​60c3232b90c773ed9c4990da7cc3bbdb​). That
module performs another injection (of module:​ ​b622a0b443f36d99d5595acd0f95ea0e​) – into
Internet Explorer (​iexplore.exe​):

The module injected in the ​iexplore.exe​ process is responsible for establishing connection with
the CnC and downloading submodules.

At this stage, LatentBot creates two groups of registry keys:

...\Software\Google\Update\network\secure

In the key named “0” the initial PE file is stored:

https://www.virustotal.com/en/file/c3d00a4c9d3bb34c2f01e777a202613deea44fe2b60fa4ccfc59d6c549107b3b/analysis/
https://www.hybrid-analysis.com/sample/8fda2fe19794835029bf9c67b560498accd30d84abf7423e665295a8603c470a?environmentId=100
https://www.hybrid-analysis.com/sample/e8664c10d439790722673ccbfa9f589d3d4fc67a3288e88ef2f82461dbb60830?environmentId=100
https://www.virustotal.com/en/file/b1c58bd464859dd1bc35f6402b18f58de9339e02625f48f3f9b81e8150a9e12f/analysis/
https://virustotal.com/en/file/d649e068e740a171768684dd46c20dd86ef53449bb385442b370619ee01a3f10/analysis/1495644392/
https://virustotal.com/en/file/0ff1fa8023030b20eaf10641516bc977d8fafa3e2258c1f46cacd8fd7ec33a0e/analysis/1495644410/
https://virustotal.com/en/file/c843d846c8e391cf078908d67ea10dd4aa9ebb6abc1e4592bcff8cb12a720a6b/analysis/1495644426/
https://virustotal.com/en/file/1b5aea4b0e840ca4e0f78587335fcafc3dbf79a9286ce5face195723913206ba/analysis/1495644435/
https://virustotal.com/en/file/4ede95a34ab8533af5265712122999cf5a6d18cc309175173951268a92715d06/analysis/1495644447/
https://virustotal.com/en/file/97618ff7dd2bccd669d6f50d79980ea28c236d7f127a472718b502fea459158e/analysis/1495644455/
https://virustotal.com/en/file/0e93ad8a6a761bf818835e15c559028a06d37a520471ff890368a1a618c77674/analysis/1495644463/
https://www.virustotal.com/en/file/e8664c10d439790722673ccbfa9f589d3d4fc67a3288e88ef2f82461dbb60830/analysis/1496222587/
https://www.virustotal.com/en/file/0521c9246ad9faae379717b17045fc66d1812eaccc39eaa3524347f8e8027b59/analysis/1496224646/
https://www.virustotal.com/en/file/0521c9246ad9faae379717b17045fc66d1812eaccc39eaa3524347f8e8027b59/analysis/1496224646/

Another, encrypted key is added under:

...\Software\Adobe\Adobe Acrobat

The data under the key “​in​” is encrypted by a custom algorithm, typical for the LatentBot, that
will be described further (it can be decoded by a dedicated​ ​application​). After decoding, it gives
the path where the malware installed itself, i.e.:

C:\Users\tester\AppData\Local\Microsoft\Windows\shfdnoh.exe

If the CnC is active and the bot managed to download sub-modules, they are run injected into
new instances of ​svchost​:

https://github.com/hasherezade/malware_analysis/blob/master/latent_bot/latent_decode.cpp
https://github.com/hasherezade/malware_analysis/blob/master/latent_bot/latent_decode.cpp

The main module is deployed with a parameter: ​-l MxN4ViazcD

This parameter specifies a group id where the bot belongs (also encrypted by Latent Bot’s
custom crypto).

MxN4ViazcD -> ​Group 1

Also, the registry keys related to the new modules are added under:

...\Software\Google\Update\network\secure

Decrypted names of the modules are very descriptive:

FtUFJu5xP3C -> ​formgrab
hdtWD3zyxMpSQB -> ​Bot_Engine
l551X+rNDh3B4A -> ​Found_Core
QdG8eO0qHI8/Y1G -> ​send_report
QdW/DoI2F9J -> ​security
RRrIibQs+WzRVv5B+9iIys+17huxID -> ​remote_desktop_service
VRWVBM6UtH6F+7UcwkBKPB -> ​vnc_hide_desktop
w97grmO -> ​Socks

Some of the modules are collecting data on the victim machine, and saving them in the
%TEMP% directory in encrypted form:

Further, they are being uploaded to the CnC.

Persistence

The basic persistence of Latent Bot is simple. The initial sample is copied into:

C\[current user]\AppData\Local\Microsoft\Windows\<random_name>.exe

It is executed on each system startup thanks to a simple Run key:

Once the main module is run, it is responsible for decrypting all the submodules from the
registry and loading them.

Network communication

The bot starts communication with CnC by sending a beacon. If the beaconing went
successfully, it starts to download additional modules in encrypted form. They are pretending to
be ​.zip​ files:

The beacon is encoded by two algorithms: Latent’s custom encryption and then Base64:

QWRsN2srdjlxUUdDYVp0aTBMUzl2cStzY0pOR3VkWlNtc3Q1VzduWlJ2SHZ6QjJhNEtuTFo3R
UNobVlOKzJMbDE0TWxBUXR2NXdxelBtSk1aeDNaNVRlaVdzdFVhZG5IK0JwcEp3NkFXVTlV
c3JJYWpKa3VzTnlSbUE=

Base64 decoded:

Adl7k+v9qQGCaZti0LS9vq+scJNGudZSmst5W7nZRvHvzB2a4KnLZ7EChmYN+2Ll14MlAQtv5
wqzPmJMZx3Z5TeiWstUadnH+BppJw6AWU9UsrIajJkusNyRmA

Latent custom decoded:

forum?datael=US-70-789548274695&ver=5015&os=5&acs=1&x64=0&gr=Group
1&random=mxmgkuusrfqdotm

As we can see, it contains data about the infected machine, as well as the group name and a
random token.

However, not all the communication is encrypted. Some of the further requests are very
verbose. Name of each action is identified by a string, in capital letters. Examples:

Client beacons to the server by a HELLO command. In return, the CnC gives it a cookie that is
further used as an ID. The content posted between the client and the server is encrypted:

Analyzing the traffic, we can find that the bot sends to the CnC some stolen data, packed as
Cabinet format. The content inside is encrypted by a custom encryption algorithm, typical to
LatentBot, that will be described later. The file is uploaded using​ ​HTTP PUT method​:

https://stackoverflow.com/questions/630453/put-vs-post-in-rest
https://stackoverflow.com/questions/630453/put-vs-post-in-rest

Inside

The original sample of Latent Bot, that is distributes in campaigns, comes packed with a crypter.
After removing this first layer, we get a loader with the following structure of sections:

All the used strings are obfuscated – particular chunks of the string are being moved to
consecutive variables:

The basic role of the main element is to to make injection into ​svchost.exe​. In the memory of
svchost.exe​, another PE file is unpacked and loaded:

If we dump this file, we find another stage. Starting from this element, all further pieces of Latent
Bot have some common patterns. They are written in Delphi, and their strings are obfuscated by
the same set of functions. Example:

In order to defeat this obfuscation I prepared a dedicated IDA script (​latent_dec.py​). Not much
of the other obfuscation techniques has been used, so after applying it, the code looks much
more understandable:

Another thing, typical for LatentBot’s pieces are the resources following similar schema. The
current sample comes with 2 resources: CFG and R. Both of them are encrypted:

https://github.com/hasherezade/malware_analysis/blob/master/latent_bot/latent_dec.py

https://www.virustotal.com/en/file/0521c9246ad9faae379717b17045fc66d1812eaccc39eaa3524347f8e8027b59/analysis/1496224646/

