
J Comput Virol (2007) 3:75–86
DOI 10.1007/s11416-007-0044-2

EICAR 2007 BEST ACADEMIC PAPERS

Formalisation and implementation aspects of K -ary
(malicious) codes

Eric Filiol

Received: 12 January 2007 / Revised: 9 February 2007 / Accepted: 15 March 2007 / Published online: 22 May 2007
© Springer-Verlag France 2007

Abstract This paper presents a new class of (malicious)
codes denoted k-ary codes. Instead of containing the whole
instructions composing the program’s action, this type of
codes is composed of k distinct parts which constitute a par-
tition of the entire code. Each of these parts contains only a
subset of the instructions. When considered alone (e.g. by an
antivirus) every part cannot be distinguished from a normal
uninfected program while their respective action combined
according to different possible modes results in the offen-
sive behaviour. In this paper, we presents a formalisation of
this type of codes by means of Boolean functions and give
their detailed taxonomy. We first show that classical malware
are just a particular instance of this general model then we
specifically address the case of k-ary codes. We give some
complexity results about their detection based on the inter-
action between the different parts. As a general result, the
detection is proved to be NP-complete.

Keywords Cohen model · k-ary malware ·
Detection problem · Polymorphism · Metamorphism ·
Code interaction

1 Introduction

In the Cohen’s general model of computer viruses [2], every
code is made of a single program which contains the whole
instructions devoted to its action. Let us consider his now
famous definition of a virus:
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Definition 1 A virus can be described by a sequence of sym-
bols which is able, when interpreted in a suitable environment
(a machine), to modify other sequences of symbols in that
environment by including a, possibly evolved, copy of itself.

Since every virus is supposed to be composed of a single
code, antiviral detection itself considers only this model. As a
consequence, it is eventually possible to decide (up to a com-
plexity or decidability issue) whether the program is infected
or not. All the information with respect to the final offensive
action is contained in a single program.

But recently, some new yet trivial attempts (Scob/Pad-
odor, Perrun. . .) in malware writing seems to announce a
new type of malware made of set of files acting in a com-
bined manner. Despite the fact that the few known examples
are rather very trivial, the objective is to scatter the viral infor-
mation over different files and thus make the viral detection
far more complex: each of the k constituting part looks like an
innocent file and thus does not trigger any alert. But beyond
these trivial attempts, there is a tremendous risk that in a very
near future, antivirus software would be defeated by sophis-
ticated variants of such codes.

We denote this new type of codes k-ary viruses.1 Let us
give a precise definition of these codes.

Definition 2 [5,6] A k-ary virus is a family of k files (some
of them may be not executable) whose union constitutes a
computer virus and performs an offensive action that is equiv-
alent to that of a true virus. Such a code is said sequential
(serial mode) if the k constituent parts are acting strictly one
after the another. It is said parallel if the k parts executes
simultaneously (parallel mode).

1 The concept of k-ary viruses can be extended to any other type of
malware: self-reproducing or simple programs. For sake of simplicity
and without loss of generality, we will limit ourselves to the computer
viruses.
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It is worth mentioning that the two modes can be combined as
the sequential/parallel mode. Each of these working modes
may be efficiently considered according to their respective
properties:

• With sequential mode, it is possible to use non-executable
file format in order to scatter the viral information (image
file, sound file, encrypted data. . .). This mode is used to
perform process escape or process hopping.

• With parallel mode, a combinatorial effect works against
the antivirus’ action. The latter has to pick up k processes
among all the running processes in a machine. With an
efficient implementation of this type of code, traditional
detection has thus exponential complexity. This mode is
used to perform process sprawl.

In this paper, we present a new model enabling to precisely
describe and study k-ary viruses. We identify the different
classes of k-ary viruses. In particular, we focus on the prob-
lem of their detection and show that in the general case, this
problem is NP-complete. This study has been initiated by
existing yet unknown malware and it has been later validated
by proof-of-concept programs in our laboratory. Whatever
the system analysis tools or security software we may use,
these codes remain undetected. This results shed a rather
pessimistic light on the future of computer attacks.

The paper is organised as follows. In the first section, we
present the new formalisation tools and framework we use to
study k-ary viruses. Essentially, we consider vector Boolean
functions. Then we compare our model to the Cohen’s classi-
cal model [2]. In particular, we show that our model is a gen-
eralisation of Cohen’s one, despite the fact that our approach
is totally different. Simple viruses and polymorphic/meta-
morphic viruses are presented as particular instances of our
model. In the next section, we then extensively present k-ary
malware in sequential mode. The poc_serial worm is taken
as an illustrative example. The last but one section is consid-
ering k-ary malware in parallel mode. The parallel_4_s
virus will illustrate the theoretical results established for that
family of k-ary codes. Finally, in the conclusion, we address
future work and some open problems.

2 The new formalisation framework

This framework is based on vector Boolean functions instead
of Turing machines as in the Cohen’s model [2]. The essen-
tial reason for that choice comes from the fact that Turing
machines cannot thoroughly describe the interaction between
programs, even by considering k-Turing machines (multi-
tapes machines). Besides the fact that it would far too com-
plex to consider them as formalisation tools, it has been
shown [6] that the generalisation of the Cohen’s model is
too limited.

In order to efficiently model k-ary malware, the concept
of vector Boolean functions is far more powerful. It enables
to consider simultaneously different files whatever may be
their respective status (executable or not). In order to define
the working context, let is consider an operating system con-
taining n files (n is of arbitrary size). These are all possible
files that exist or may exist in the system at a given time.
Each of these files are described by a Boolean variable xi ,
i = 1, 2, . . . , n. No particular assumptions is made about the
status of any of these files (executable or not, data. . .).

We set xi = 1 whenever the file i is considered, otherwise
xi = 0 (in particular, if it does not exist at time instant t).
Instead of working with a variable number of files, it is more
efficient to fix n arbitrary large. From a mathematical point
of view, whenever given files i j1 , i j2 , . . . , jim do not exist
at time instant t , then any Boolean function ft over F

n
2 we

may use, will be degenerated in the corresponding variables,
where F2 denotes the binary field.

We then consider two different Boolean functions: the
transition function and the infection function. Both describe
the relationship which exists between the files in the system
at time instant t .

2.1 Preliminary concepts

Most of self-reproducing codes that exist at the present time
are worms and thus a single copy of the malware is present
in the system. But it is not the case as far as virus are consid-
ered (many copies exist in the system at the same time). In
order for our model to be general, we will consider that all the
different copies of a malicious codes are in fact a single one,
e.g. the viral code. In the very special case of k-ary viruses,
the viral code is the disjoint union of k different files.

From a mathematical point of view, it is equivalent to con-
sider the following equivalence relation, which is defined on
a set S (the file system).

Definition 3 (Infection relation) Let x1 and x2 be two files
and let v be a given computer virus. We then define the equiv-
alence relation Rv as follows:

x1Rvx2 if x1 ∩ x2 ∈ {x1, x2, v}.
This is an equivalence relation and any equivalence class of a
given element x is defined by C(x) = {y|y ∈ S and xRv y}.
The class C(v) contains every file infected by v. Every class
which is a singleton contains an uninfected file.

Consequently, in the rest of this paper we will consider
the quotient set with respect to Rv . It is a partition of the set
S and we denote it S/Rv

. Thus once a file has been infected,
it will be considered as equivalent to the virus v itself. This
assumption is natural since an infected file spreads itself the
infection and hence behave like v. From now on, the use of
the quotient set will be implicitly considered.
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2.2 The transition function

It is a vector Boolean function, denoted Ft : F
n

2 → F
n

2 .
It describes the relationship and the interactions existing
between files from time instant t − 1 to time instant t . In
particular, as far as a k-ary code is concerned (suppose its
parts are files i j1 , i j2 , . . . , jik ), the transition function will
describe the interactions between its k different, constituent
parts from one side and its interaction with the other files in
the system in the other side.

Without loss of generality and for clarity’s sake, it is more
convenient to consider the functional restriction of Ft to Ft

v ,
the latter considering the k files of the virus only. This restric-
tion enables to focus on their relationship exclusively.

There exist different representation for the transition func-
tion Ft . The first one is its truth table as in Table 1. It repre-
sents the system global transition.

The coordinate functions Ft
1, Ft

2, Ft
3 of Ft are the func-

tions over F2 such that Ft = (Ft
3, Ft

2, Ft
1). It is then possible

to compute their Disjunctive Normal Form (DNF) by means
of the Möbius transform [4]. Thus the function described in
Table 1 yields:

Ft
1(x3, x2, x1) = x2x3

Ft
2(x3, x2, x1) = x1x3

Ft
1(x3, x2, x1) = x2

This representation enables us to see that file 1 interacts only
with file 3. More generally, Ft

i (x3, x2, x1) depends on files
interacting with file i only. Finally, we can equivalently and
more compactly use the associate incidence matrix I (Ft ) to
describe the transition function. For the function of Table 1,
we have:

I (Ft ) =
∣
∣
∣
∣
∣
∣

0 1 1
1 0 1
0 1 0

∣
∣
∣
∣
∣
∣

More generally, the incidence matrix I (Ft ) is a square matrix
of order n which is defined as follows:

Table 1 A truth table for a vector Boolean function (n = 3)

x3 x2 x1 Ft
3(x3, x2, x1) Ft

2(x3, x2, x1) Ft
1(x3, x2, x1)

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 0 0 1

1 1 0 0 1 0

1 1 1 1 0 0

ai j = 1 if file i acts on file j,

ai j = 0 otherwise.

We can graphically describe the information contained in the
incidence matrix I (Ft ) by means of its associate transition
graph as depicted in Fig. 1.

The transition graph—or equivalently its incidence matrix
—describes file interactions at a rather global level only (all-
or-nothing information). We only know whether a file acts
on another file or not but not how it does. That is the reason
why we must consider the iteration graph in order to have a
more detailed information on the infection process itself. It
is established by finitely iterating the transition function Ft

with respect to time t as follows:
{

x0 ∈ F
n

2
xt+1 = Ft (xt ) t = 0, 1, 2, . . .

The resulting iteration graph is then depicted in Fig. 2, each
node being the decimal value of triplets (x3, x2, x1) com-
puted as 4x3 + 2x2 + x1. The iteration graph describes the
dynamic evolution of the system S at each time instant t with
respect to the infection by the different parts composing the
k-ary virus v. In particular, it is worth mentioning the exis-
tence of a fixed point (or stable state for the system S) which
is obtained after four infection steps (all possible target files
have been infected).

Fig. 1 Transition graph of
Table 1 1

2

3

1

2

0 5

6 3

4

7

Fig. 2 Iteration graph of Table 1
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2.3 The infection function

The infection function is used to describe the different parts
which compose the virus. Somehow this function can also be
seen as the detection function since it shows whether the virus
is present or not in the system S or equivalently, it is possible
to state the presence of the virus in S. It enables to describe
how the viral information is scattered all over this system.

The infection function is consequently defined by fv :
F

n
2 → F

n
2 . For any x ∈ F

n
2 , the system S is infected by the

virus v if and only if fv(x) = 1. The interest of the infec-
tion function may look somehow artificial, since most of the
time it is unknown. It is a a posteriori knowledge. But this
function is very useful for our formalisation as we will see
later.

Composing infection and transition functions From a
practical point of view, it is worth considering both the sys-
tem evolution at a given time instant t and its infectious status
(infected or not) at the same time. While for classical com-
puter viruses (k = 1) both are in fact equivalent, it is not the
case with k-ary viruses. Despite the presence in the system
S of a k′-subset of the k parts of a k-ary virus (k′ < k), it
does not necessarily imply that S is infected. A trivial exam-
ple is that of source code viruses. The viral source code will
not trigger any alert while the pair code/compiler should.
Companion viruses could be considered as another yet triv-
ial example of k-ary viruses.

From a mathematical point of view, we will consider the
functional composition of function Ft with function fv ,
denoted fv ◦ Ft . Thus, if there exists x ∈ F

n
2 such that

( fv ◦ Ft )(x) = fv(Ft (x)) = 1, we will state that x has
infected the system S at time instant t .

Before presenting the main results we have obtained from
our model, let us give the working framework we use for sake
of simplicity and clarity at least in a first formalisation step.

Convention 1 In any real-life system S, the different inter-
actions existing between files are very numerous and com-
plex: file creation or deletion, call, links. . . It would have
been impossible to describe all of these due to the file system

complexity. Without loss of generality, we will not model
these interactions unless strictly necessary. The correspond-
ing sub-model—in other words the model without consid-
ering the interactions with non-viral files—will be denoted
“simplified model”. However whenever suitable for some
particular results, these interactions will be referred as the
“generalised model”.

3 Classical malware in the new model

Despite the fact that our model is clearly different from
Cohen’s one, it encompasses the latter. In order to illustrate
our claim, we will consider to main cases: simple viruses and
polymorphic viruses—or equivalently, according to Cohen’s
model [2], singleton viral set and largest viral set respectively.
Each of them is just one program—possibly an evolved form
of another one—which performs a complete viral action on
its own. Consequently, these “classical” viruses are k-ary
viruses indeed with k = 1.

3.1 Case of a simple virus (Cohen’s singleton viral set)

Let us consider a toy system with three files x1, x2 et x3. The
virus v will be described by file x1, while file x2 will be a tar-
get executable file with respect to v and file x3 will not (e.g.
data file). Let us recall (see the section devoted to preliminary
concepts) that we work up to the equivalence relation Rv by
considering the following functional composition:

S
Ft−→ S

Rv−→ S/Rv
.

The infection of file x2 by the file x1 is then described by the
sequence

(0, 1, 1)
Ft�−→ (0, 1, 1)

Rv�−→ (0, 0, 1).

The transition function (resp. infection) Ft (resp. fx1 ) are
given in Table 2.

Interesting combinatorial results have been stated from
the study of the corresponding iteration graph depicted in

Table 2 Transition and
infection functions of a
singleton viral set

x3 x2 x1 Ft
3(x3, x2, x1) Ft

2(x3, x2, x1) Ft
1(x3, x2, x1) fx1 (x3, x2, x1)

0 0 0 0 0 0 0

0 0 1 0 0 1 1

0 1 0 0 1 0 0

0 1 1 0 0 1 1

1 0 0 1 0 0 0

1 0 1 1 0 1 1

1 1 0 1 1 0 0

1 1 1 1 0 1 1
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0 2
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3 4
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67

Fig. 3 Iteration graph of a singleton viral set

Fig. 3. The study of the iteration graph enables to state this
first result.

Proposition 1 Let v be a simple virus, described by the
tuple (point) ei (xi = 1 and x j = 0 for j �= i ), and let
us consider S a system containing n fichiers among which m
are infectible with respect to the virus v. Then, the iteration
graph describing the infection with respect to v contains:

– 2n−1 connected components, each of them being reduced
to a single fixed point;

– a connected component, called viral component, which
contains the fixed point ei and 2m − 1 other points which
all have the point ei as a successor;

– 2n−m−1 connected components which all contain a single
fixed point.

Proof Let be x ∈ F
n
2. Let us denote by supp(x) the set {i ≤

n|xi = 1}. Let us suppose that e j = v. Then three different
cases are to be considered:

– if j /∈ supp(x), we then have Ft (x) = x . By construction,
there are exactly 2n−1 such points x ;

– if j ∈ supp(x) and the indices k such that k ∈ supp(x)

relates to a file that can be infected by v only, then we have
Ft (x) = e j . By construction, there are exactly 2m − 1
such n-tuples;

– the other cases are those for which we have j ∈ supp(x)

and the indices k such that k ∈ supp(x) with xk describ-
ing any file (that can be infected or not by the virus v)
different from v. Let be two different such n-tuples x and
y. We then have either Ft+1(x) = y if y ≺ x (that is to
say supp(y) � supp(x)) or Ft+1(x) = x ; in this latter
case, it is a minimal elemeny for the ordering ≺. There are
2n−m−1 such minimal elements for that third case. Those
minimal elements are all the points x whose support con-
tains j and any subset of indices k which correspond to
files that cannot be infected by v, only. Since a connected
component can contain only a single fixed point only [12,
pp. 20, Proposition 1.1], we have proven the result.

By considering the incidence matrix I (Ft ) given by

I (Ft ) =
∣
∣
∣
∣
∣
∣

0 0 1
0 1 1
1 0 0

∣
∣
∣
∣
∣
∣

Fig. 4 Transition graph of a
singleton viral set 1

2

3

we can establish the corresponding transition graph given in
Fig. 4.

Then, the following proposition can be stated from the
analysis of both graphs.

Proposition 2 Let v be a singleton viral set described by
the n-tuple ei (xi = 1 and x j = 0 for j �= i ) and let S
a (n, m)-file system where m is the number of files that are
insensitive with respect to infection by v. Then, the incidence
matrix describing the infection with respect to virus v has:

• m + 1 rows of weight 1 (a single non-null entry);
• n − m − 1 rows of weight 2;
• n − 1 columns of weight 1;
• one column of weight n − m, denoted infection column,

which is gathering the viral point ei and every of its
targets x j .

Proof The proof is straightforward by considering the fact
that the coordinate functions Ft

i (namely the matrix rows)
with respect to the files that are insensitive to infection by
v, depend by construction on these files only. Consequently,
there are m rows of weight exactly 1, plus the row which
corresponds to the virus file itself. On the contrary, the coor-
dinate functions with respect to the files that can be infected
by v depends on both the virus and these files. There are
exactly n − m − 1 such rows.

As for the columns, the proof is the same by considering
the possible action of the file i on the coordinate function Ft

j
instead of the dependence relationship. The single column
that contains more than one non-null entry is that which
describes the action of the virus ei . 
�

Proposition 2 is very interesting since it shows that accord-
ing to our model, file interaction-based detection by means
of the incidence matrix alone has linear complexity O(n)

(weight evaluation of n columns). Unfortunately, despite this
linear complexity, the size of input data grows quadrati-
cally in n and therefore may be huge. As an example, is
n = 20,000, the incidence matrix has a size of 0, 4 Gb. How-
ever, sampling techniques may be successful at reducing the
overall complexity. Moreover, building the incidence matrix
may be performed by emulation techniques (test whether
file xi acts on file x j ). While classical detection techniques
will do far better in client antivirus software, incidence based
detection technique may prove very efficient for initial detec-
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tion (case of unknown viruses) on honeypot machines, at the
antivirus publisher or Internet monitoring center’s level.

Let us now consider a statistical description of the infection
which is useful for sampling based-detection. This approach
is very interesting since building the transition function Ft

is untractable in practice. Let us note supp(u) = {i |ui �= 0}
with u = (u1, u2, . . . , un).

Proposition 3 Let Ft (x) the transition function of a virus
denoted by the n-tuple ei . Let u and w be two elements of
F

n
2 . Let us additionally denote the infectible files with respect

to ei by c j and those are are not, by nk. Then, for a single-
ton viral set, the probability P[< Ft (x), u >=< x, w >]
equals:

• P[< Ft (x), u >=< x, w >] = 1 iff u = w = ei ;
• P[< Ft (x), u >=< x, w >] = 1 iff supp(u)=supp(w)

and iff their support set contains the virus index i and
indices k of non-infectible files with respect to ei , only;

• P[< Ft (x), u >=< x, w >] = 1
4 iff w = ei and iff

supp(u) contains indices j of infectible files with respect
to ei , only;

• P[< Ft (x), u >=< x, w >] = 3
4 iff supp(u) and

supp(w) contain the virus index i and /or the same infec-
tible files c j (in other words, the restriction of supp(u)

and supp(w) to files c j are identical);
• P[< Ft (x), u >=< x, w >] = 1

2 in every other cases.

where < ., . > denotes the usual scalar product. Finally, we
have

P[( fv ◦ Ft )(x) =< x, ei >] = 1.

Proof The two first ones are obvious. Indeed, the virus can-
not infect itself (if the virus is supposed to be efficiently
designed) and as far as the files that are insensitive to the
infection with respect to this virus are concerned, the inputs
and the outputs of the function are the same.
For the third case, we have:

• Let be i ∈ supp(x), then in this case we have
< Ft (x), u >= 0. Indeed, every < Ft (x), c j >= 0
(when considering the quotient set),

• Let be i �∈ supp(x) then < Ft (x), u >= 0 with a prob-
ability of 1

2 .

We then have

P[< Ft (x), u >=< x, v >] = P[i ∈ supp(x)].1
+P[i �∈ supp(x)].1

2
= 1

4
.

The remaining cases are proved in a similar way.
Finally, the last probability P[( fv ◦ Ft )(x) =< x, ei >]

is obvious to compute in the special case of the singleton
viruses. 
�

Proposition 3 is very interesting since it shows that input/
output correlations for the transition function Ft are indepen-
dent from the system S. Thus, we can characterise a singleton
viral set uniquely and independently from any system S.

3.2 Case of a polymorphic/metamorphic Virus
(Cohen’s largest viral set)

We will assume that the viral set (LV S) we consider is finite
(but we can generalise to finite enumerable sets [15]. In that
set, every element is an evolved form of another element (at
least by transitive closure). Thus, for a given Turing machine,
we have ∀{vi , v j } ⊂ LV S(M) vi → v j or v j → vi . If the
set is finite we consider that both relations hold.

The representation of polymorphic viruses by means of
our Boolean model becomes untractable very soon. So, due
to lack of space, we will not give in extenso the different
possible transition functions but the different rules to build
them only.

We consider a n-form polymorphic virus, denoted (xv1 ,

. . . , xvi , . . . , xvn ). Let us also consider a system S containing
N files whose m are infectible with respect to the virus (hence
N −m−n are not). We denote (x f1 , . . . , x f j , . . . , x fm ) the in-
fectible files and (xi1 , xi2 , . . . , xik , . . . , xiN−m−n ) those which
are not. The general rule to build the transition function Ft

are, ∀x ∈ F
n

2 :

• If supp(x) ∩ {vi } = ∅, then Ft (x) = x (the virus is not
active);

• If supp(x) ∩ {vi } �= ∅ and supp(x) ∩ {ik} �= ∅ and
supp(x) ∩ { f j } = ∅, then Ft (x) = x (the virus is active
but there is no file to infect);

• Let n1 = |supp(x)∩ {vi }| (the number of mutated forms
represented in x) and n2 = |supp(x)∩{ f j }| (the number
of files that are infectible by the mutated forms in x).
Then, we define y = x and we cancel the n − 2 posi-
tions in y whose index describes an infectible file and
if n2 > n − n1, we set to 1 n − n1 null positions in y
which each corresponds to a mutated form of the virus
(for every new target, a new mutated form appears, until
the total number of forms has been reached). Finally, we
put Ft (x) = y.

It is worth mentioning that any mutated form does not infect
any other one (at least for a well-written code). As an exam-
ple, Table 3 gives the transition and iteration functions of a
3-form polymorphic virus, denoted x1, x2 and x3. The sys-
tem S contains five files in which only file x4 is infectible
with respect to the virus.

The iteration graph is partially given in Fig. 5 as well as
the transition graph in Fig. 6 (single fixed points have been
omitted). Let us state a first result that be derived from our
model.
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Table 3 Transition and iteration functions of a polymorphic/metamor-
phic virus

(x5, x4, x3, x2, x1) Ft
5(x) Ft

4(x) Ft
3(x) Ft

2(x) Ft
1(x) f{x1,x2,x3}(x)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 1

0 0 0 1 1 0 0 0 1 1 1

0 0 1 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0 1 1

0 0 1 1 0 0 0 1 1 0 1

0 0 1 1 1 0 0 1 1 1 1

0 1 0 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 1 1 1

0 1 0 1 0 0 0 1 1 0 1

0 1 0 1 1 0 0 1 1 1 1

0 1 1 0 0 0 0 1 0 1 1

0 1 1 0 1 0 0 1 1 1 1

0 1 1 1 0 0 0 1 1 1 1

0 1 1 1 1 0 0 1 1 1 1

1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 1 1 0 0 0 1 1

1 0 0 1 0 1 0 0 1 0 1

1 0 0 1 1 1 0 0 1 1 1

1 0 1 0 0 1 0 1 0 0 1

1 0 1 0 1 1 0 1 0 1 1

1 0 1 1 0 1 0 1 1 0 1

1 0 1 1 1 1 0 1 1 1 1

1 1 0 0 0 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 1

1 1 0 1 0 1 0 1 1 0 1

1 1 0 1 1 1 0 1 1 1 1

1 1 1 0 0 1 0 1 0 1 1

1 1 1 0 1 1 0 1 1 1 1

1 1 1 1 0 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1

Proposition 4 Let us consider a system S whose m files are
infectible by a n-form polymorphic virus. Let us assume that
n < m. Then the transition graph of the infection by the virus
(xv1 , . . . , xvn ) contains a directed complete subgraph whose
points are the points (evi )1≤i≤n.

1

2

4

3

5

Fig. 6 Partial transition graph of a 3-form polymorphic virus

Proof Without loss of generality, we suppose that the muta-
tion process is done according to the following scheme xvi →
xvi+1 with xvn → xv1 . Let us note x fi , for 1 ≤ i ≤ m the
variable corresponding to files that can be infected by the
virus.

To prove the proposition, it suffices to show that every
variable xvi is contained in the (disjunctive or algebraic) nor-
mal form of every coordinate function Ft

j , for v1 ≤ j ≤ vn .
We will consider the algebraic normal form (ANF) [4]. Let
us recall that the ANF of a N -variable Boolean function f is
described by

f (x1, x2, . . . , xN ) =
∑

αεF2N

aαxα aα ∈ F2

where x = (x1, x2, . . . , xN ) and xα = xα1
1 xα2

2 · · · xαN
N with

αi ∈ F2. The ANF coefficients aα are computed by means
of the Möbius transform [4]:

aα = g(α) = ⊕
β�α

f (β1, β2, . . . , βN ),

where β � α is the partial ordering on the subset lattice of
F

N
2 . In other words, β � α ⇔ βi ≤ αi∀i .

With these notations, let us show that the ANF of every
coordinate function Ft

j , with v1 ≤ j ≤ vn contains all the
variables xvi , 1 ≤ i ≤ n. Let us denote M = m + n.

Let us consider the M-tuple αi = (. . . , x f v j−1 , . . . ,

x f v1, 0, . . . , xvi , 0, . . . , 0) made of j − 1 non null elements
(which correspond to files that can be infected by the virus)
and of a single non null element which corresponds to the

Fig. 5 Partial iteration graph of
a 3-form polymorphic virus composante_virale
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mutated form vi of the virus. Let us show that the coefficient
aαi = 1 in the ANF of Ft

j for v1 ≤ j ≤ vn .
By construction of the function Ft , the M-tuple β = αi

is the single one such that Ft
j (β) = 1. Indeed, in order to

generate the mutated form v j , at least j − 1 infectible files
must be present.

Since the number of M-tuples β for which Ft
j (β) = 1,

is odd, for every j ranging from v1 to vn , we have aαi = 1
for every j ranging from v1 to vn . Consequently, whatever
maybe the variable xvi (by iterating on the index i), it is
represented in the ANF of every coordinate function which
corresponds to a mutated form of the virus. Hence the result.


�
Remark For most practical polymorphic viruses, the num-
ber of forms n is far larger than the number of file to infect
in S. Thus the complete subgraphs does only partially exist.
Nonetheless, this general result states in a different manner
the result of D. Spinellis about polymorphic virus detection
complexity [13].

Theorem 1 Let S be a system containing m infectible files
with respect to a n-form polymorphic virus and let us assume
that n < m. Detection of a polymorphic virus, when based on
the interactions between its mutated forms is NP-complete.

Proof The proof uses the fact that determining whether there
exists a clique of size n (complete sub-graph) in a graph
(the transition graph) is a N P-complete problem [10]. In the
case of our theoretical model (see Convention 1), solving
this problem may prove to be easy—there is only one con-
nected component, which is not reduced to a single point and
which contains a complete sub-graph of size n with respect
to the virus (xv1 , xv2 , . . . , xvn ). In a real-life context (exis-
tence of many interactions between files that can be infected
and those that cannot), there may exist many other connected
components from one side, and the viral component is not
necessarily limited to the viral files only. In other words, in
a real context, the transition graph is so “complex” that it
represents a hard instance of the clique problem. Hence the
result. 
�

Other results have been established for polymorphic/meta-
morphic viruses from our Boolean model [6], especially on
the structure of the iteration graph.

It can be stated for polymorphic/metamorphic viruses that
compared to simple virus (singleton viral set), the “viral
information” is no longer concentrated on a unique file but
on the different possible mutated form, even if every form is
able to spread the infection alone. As far as the equivalence
relation Rv is concerned, there is no redundancy between the
mutated forms. But if any of them is being analysed, the muta-
tion process will be known and every possible evolved form
will be detected (at least theoretically). We thus are facing

the same situation as in a singleton viral set. The weakness
comes from the fact that the virus’action is totally defined in
the code, whatever may be its form.

4 K -ary codes

Our model enables to prove that simple viruses (singleton
viral sets) and polymorphic/metamorphic viruses (largest
viral sets) are somehow equivalent. Their respective iteration
graphs are quite similar, up to the choice of the equivalence
relation defined in the Sect. 2.1 [6]: as an example there does
not exist paths of length greater than 2 in both cases. That
precisely means that all the viral information is available after
a single infection step.

The essential interest of k-ary viruses precisely comes
from the fact that the viral information is scattered over differ-
ent files. Consequently, we can define new classes of viruses
that are not equivalent to existing viruses. Two main classes
of k-ary codes have been identified:

• Class I codes. These codes are working sequentially (one
after the another). Three subclasses are to be considered:
• A subclass (dependent sequential codes). Every part

refers or contains a reference to the other ones. It is
the weakest class in term of detection since success-
ful detection of one part helps to detect the others;

• B subclass (independent sequential codes). No part
is referring to another one. Detecting one part does
not endanger the other ones. The detected part may
be automatically replaced under a different form.

• C subclass C (weakly dependent sequential codes).
Dependency between codes is partial and directed
only.

• Class II codes. These codes are working in parallel.
The same three previous subclasses are to be considered
in the same way. By definition, the k parts have to be
present and active at the same time in the system. This
may represent a weakness unless efficiently designed and
implemented.

4.1 K -ary codes in sequential mode

By definition, these codes are in fact a partition of k parts.
Each of them performs only a chunk of the whole action,
according to a sequential mode. Each of them must look like
an innocuous file. The offensive (malicious) action can be
determined by simultaneously considering the k parts only,
or at least a subset of a fixed size. Many different settings can
be imagined.

Only a few very trivial cases are known, with k = 2 and all
belong to the A or C subclasses. Due to their inherent weak-
nesses, they are all bound to be detected. We can quote the
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Perrun virus or the Scob/Padodor Trojan. We could also men-
tion the case of the OpenOffice virus called Final_Touch [3].

We now are going to detail the case of a B subclass
k-ary worm. Up to the author’s knowledge, this type of code
has never been found yet “in the wild”. In order to thor-
oughly study this technology, we have designed and analysed
a proof-of-concept worm, called poc_serial. We will first
present the worm itself and then we will consider the general
model for this subclass.

The poc_serial worm We present here a generic setting of
the worm only. Our aim is to focus on the algorithmic aspects
but many variants are possible. Moreover for both ethical
and legal reasons, we will not give implementation details.
Besides the fact that it is not useful for the understanding, this
kind of technology cannot be detected by existing antiviral
technologies.

The poc_serial worm is made of k parts. From a practical
point of view, we can choose 4 ≤ k ≤ 8. Every of these parts
are totally indistinguishable from any other legitimate, innoc-
uous program, especially as far as its behaviour is concerned.
The final payload consists in stealing a document and making
it escape from the target machine.2

Let us denote (Pi )1≤i≤k the constituent parts of the
poc_serial worm (the worm will be noted Wk for short).
Without loss of generality, we assume that these parts are
working according to the following order: P1 → P2 →
. . . → Pk → P1. The main features of Wk are:

• at time instant t , only part Pi is present in the system. To
manage the worm evolution in the system, the following
rules have been adopted (among many other possible),
assuming that k + 1 = 1:
1. if Pi and Pi+1 are simultaneously present in the sys-

tem, then Pi wipes out itself;
2. if Pi is present but Pi+1 did not then Pi+1 is created

and Pi wipes out itself;
These two rules are iteratively applied until obtaining a
k-tuple of weight 1. It is essential to note that the first rule
should never used when considering an efficient imple-
mentation of Wk . The critical point lies in the fact that
only one part must be present in the system at a given
time instant;

• for every 1 ≤ i ≤ k, the file Pi does never refer to file
Pj (1 ≤ i ≤ k et i �= j). In other words, the analysis of
any Pi does not enable to guess what the other Pj are.
Nonetheless, every part must be able to detect the exis-
tence in the system of any other part without any relevant
knowledge on it and without containing any reference to
it. This point is critical too. Techniques like those pre-

2 We use a “real” payload in order to evaluate resistance to behaviour-
based detection.

sented in [11] are very useful at achieving this constraint
(among many other possible ones);

• from a practical point of view, a minimal time delay
�t > 0 is introduced between the respective action of Pi

and Pi+1 in order to make sure that any antivirus cannot
have the two files simultaneously at its disposal;

• every part Pi brings deception techniques into play. The
latter aim at creating fake interactions within the target
system. These techniques are very useful as Theorem 2
will prove it.

According to the worm variant, the infection spreads either
from a fixed server (centralised mode) or from any target
machine directly (decentralised mode).

The theoretical model For sake of simplicity, we will con-
sider the case of W4 = (P1, P2, P3, P4). Moreover, we will
limit the use of the Boolean variables to the four parts of the
worm. From a general point of view, we would extend F

4
2 to

F
n

2 to take every file in the system into account. Let us first
consider the context of the simplified model (refer to Con-
vention 1). Under the working rules defined in the previous
section, transition and iteration functions for W4 are given in
Table 4. Each part Pi is denoted by variable xi . The iteration
graph is given in Fig. 7 and the transition graph in Fig. 8. Let
us state a first combinatorial result on the iteration graph.

Proposition 5 Let S be a system containing N files before
infection. The iteration graph modelling the infection with
respect to Wk (simplified model) has:

Table 4 Transition and infection function of the W4 worm

x4 x3 x2 x1 Ft
4(x) Ft

3(x) Ft
2(x) Ft

1(x) f{x1,x2,x3,x4}(x)

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 0

0 0 1 1 0 1 0 0 0

0 1 0 0 1 0 0 0 0

0 1 0 1 1 0 0 0 0

0 1 1 0 1 0 0 0 0

0 1 1 1 1 0 0 0 0

1 0 0 0 0 0 0 1 0

1 0 0 1 0 0 1 0 0

1 0 1 0 0 1 0 0 0

1 0 1 1 0 1 0 0 0

1 1 0 0 0 0 0 1 0

1 1 0 1 0 0 1 0 0

1 1 1 0 0 0 0 1 0

1 1 1 1 0 0 0 1 1
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Fig. 7 Iteration graph of the W4 worm
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Fig. 8 Transition graph for the W4 worm

• 2N connected components, each being reduced to a sin-
gle fixed point;

• 2N connected components, each of them containing
2k − 1 points and a cycle of length exactly k.

Proof Let us denote Wk = (xk, xk−1, . . . , x1). Without loss
of generality, let us describe the files in the system S that
are different from any viral part Wk , by the N -tuple (xN+k,

xN+k−1, . . . , xk+1). Every point x ∈ F
N+k
2 will be described

by the couple (y, y) with y ∈ F
k
2 (“viral” part of x).

For the single point components, they each contain a point
x ∈ F

N+k
2 whose support does not contain any index rela-

tively to a file which would be any part Pi of the code Wk .
There are exactly 2N such points.

For the second point of the proposition, every connected
component contains every points whose image given by the
function Ft is one of the k points ei (recall that this point
only the i-th coordinate which is non-zero). Moreover, for
every point ei , we have Ft (ei ) = ei+1 with the convention
that k + 1 = 1. The file that cannot be infected by the virus
have no interaction with any of the part of the code Wk , for
all x = (y, y). Then we have Ft (x) = (y, Ft (y′)).

Besides that, for x = (y, y) and x ′ = (y′, x ′) such that
y �= y′, we have Ft (x) �= x ′ and Ft (x ′) �= x . Since there
are 2N possible y, we have the result. 
�

From that proposition, we now can give the detection com-
plexity for k-ary sequential code, when considering func-
tional analysis (in other word file interactions).

Theorem 2 Let S be a system which has been infected by a
k-ary sequential code. Detecting this code, when relying on
functional evolution analysis is NP-complete.

Proof Let us now consider the generalised model. In other
words we take every possible file interaction in S into account.
This implies that the connected components are no longer dis-
connected one from the another. There exist many edges that
bridge connected components. Those bridges may be build
by deception techniques to increase the graph complexity
(see subsection devoted to the poc_serial worm).

Detection of Wk-like codes, by definition, implies to detect
the whole set of its parts. For every x ∈ F

N+k
2 , we have to

search for a circuit of length exactly k which walk through
an arc whose endpoints are any two viral parts. It has been
proved by Thomassen [14] that it is a NP-complete problem,
in the general case. Hence the result. 
�

It is worth mentioning that this results could have been
proved in a similar way by considering, among many others,
either the problem of partial sub graphs isomorphism [8,10]
or the problem of determining whether a graph has stability
number at most s (in our case s = 2k−1) [1, pp.40].

Thus detecting sequential k-ary codes is untractable from
a general point of view. The practice can be made very close
from the theory by considering suitable values of k and �t .
When considering the transition graph, we get the same com-
plexity result. Contrary to polymorphic/metamorphic codes,
the analysis of any of the parts Pi is not sufficient in itself: we
must have all the parts at one’s disposal. Any part contains
a subset of the viral instructions only. This can be stated as
follows.

Proposition 6 Let Ft (x) be the transition function model-
ling the infection by a sequential k-ary code of B subclass
(Wk-like) in a N-file system S (before infection). Let fWk be
the corresponding infection function. Then, for every u ∈ F

k
2 ,

such that supp(u) ⊆ supp(Wk), we have

P[( fv ◦ Ft )(x) =< x, u >] = 1

2
− s(u)

1

2k
,

with s(u) = (−1)wt(supp(u)).

Proof Let us recall that supp(Wk) describes the (N+k)-tuple
in which only k coordinates which corresponds to the con-
stituent parts of Wk equal 1. The result can be easily proved
by considering the fact that < x, u >= 0 with a probability
exactly equal to 1

2 and that the function ( fv ◦ Ft )(x) = 1 for
x ∩ supp(Wk) = supp(Wk). Then for that last equality, either
supp(u) has an odd weight and thus we have < x, u >= 1
and s(u) = −1, or on the contrary < x, u >= 0 and
s(u) = 1. Hence the results. 
�
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This essential result shows that sampling-based statistical
detection on the transition graph becomes itself untractable
as soon as k increases.

4.2 K -ary codes in parallel mode

These codes are made of k memory resident parts which act
in parallel. This seems to be a weakness since the analysts
has at his disposal the whole viral information, at least the-
oretically. Nonetheless, from a practical point of view, k-ary
codes in parallel mode can prove to be very powerful. More-
over, they represent a critical risk that antivirus are likely to
fail to fight against. Two main reasons for that claim, may be
considered:

• these codes may be deployed by stealth techniques or
even worse by sophisticated, virtualisation-based rootkit
techniques like BluePill [12] and SubVirt [9];

• detecting is not sufficient in itself. Disinfection is at least
as important as detection. We will see how a k-ary paral-
lel code of A or C subclasses can hold antivirus software
in check with respect to disinfection.

4.3 The parallel_4 and parallel_4_s virus

This code has been found in the wild in 2004 but up to the
author’s knowledge it is not documented yet. Only a few
antivirus software are able to detect it as a generic code. But
the essential feature of this code is that antivirus are totally
unable to eradicate it from infected computers. Detection
after detection, the code remains active. This code has been
named parallel_4 according to its working mechanisms.
Indeed, it is a A subclass 4-code in parallel mode. We are
now going to present a sophisticated proof-of-concept var-
iant that we derived from the original code. This variant is
called parallel_4_s

The main features of parallel_4_s are the following:

• every of the four parts contains a chunk of the viral infor-
mation only;

• the four parts are simultaneously active in memory;
• every part is able to regenerate the three others, under an

evolved form (the mutation process includes the name of
the code/process itself);

• besides its inherent assigned action, every part keeps
watch on the three others and check whether it is still
active or not. If one or more are no longer resident (the
process has been killed), a random one of three others
regenerates it. Since the names of the four processes are
likely to frequently change, every part is able to blindly
identify the others;

• every part, at irregular time instant, self-refreshes while
mutating its name in order to simulate a normal memory
activity, at the process level.

Every time an antivirus succeeds in detecting one the four
parts, the three others are regenerating it under different name
and form. Consequently, disinfection is no longer possible.

4.4 The theoretical model

From formal point of view, k-ary parallel codes are not
different from sequential k-ary codes, whatever may be the
subclass. Processors work sequentially by nature (Turing
machines) so both codes are somehow equivalent.

The main result that can be stated here follows.

Proposition 7 Le S a system which is infected by a paral-
lel k-ary code, called Pk. Then the corresponding transi-
tion graph which describes the infection of S with respect to
Pk = (xk, xk−1, . . . , x1) (simplified model) contains a com-
plete subgraph whose nodes are points (ei )1≤i≤k .

Proof The proof is essentially the same as for k-ary sequen-
tial codes. 
�
When considering deception techniques and the Boolean
generalised model, Proposition 7 enables to prove that detect-
ing parallel k-ary codes is untractable in the general case.

Theorem 3 Let S a system which is infected by a parallel
k-ary code. File interaction-based detection of this code in
S is a NP-complete problem.

The proof is the same as that given for Theorem 2. From a
general point of view, most of the theoretical results we got
for sequential k-ary codes hold for parallel k-ary codes as well.

5 Future work and conclusion

K -ary codes are a powerful family of codes. Besides a huge
number of beneficial applications (e.g. protection against
software piracy), they represent a huge risk in term of
malware. Existing antivirus technologies are totally ineffi-
cient at detecting those codes as our study and experiments
have confirmed it. It would be wrong to imagine that any
technical protection against these codes is tractable due to
the average complexity of their detection. Detection has to
face combinatorial problems that cannot be solved in an
amount of time that is compatible with commercial antivirus
software.

Theoretical analysis of k-ary codes is at its early stage
only. Much has still to de done. Vector Boolean functions
(transition functions) enable to formalise things in a power-
ful way. But, in this paper we consider only a few possible
functions. New building rules can be considered that will
give birth to new kind or behaviour of k-ary codes. As an
example, we could define rules in order to get Hamilton
graphs or graphs containing cliques both for the transition
graph and the iteration graph.
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However, due to their deterministic nature, vector Boolean
functions can grasp only a small subset of k-codes. Indeed,
for x ∈ F2 n, the value Ft (x) is then fixed: the resultant k-ary
code is deterministic too. Consequently, we could extend our
model by considering non-deterministic automata (thus any
x ∈ F2 n may have more than one successor). First studies
[6,7] have shown that this enables to design malware whose
detection is far beyond the NP-complete class, not to say un-
decidable. Moreover, non-deterministic automata make pos-
sible to consider transition functions are not defined on a
finite number of x .
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