
 GENERIC DETECTION AND CLASSIFICATION  OF POLYMORPHIC 
MALWARE USING NEURAL PATTERN RECOGNITION

Rubén Santamarta
ruben@reversemode.com
www.reversemode.com

   
Dedicated to all  who lost their life far away from their families, struggling for an ideal of justice,  
equality, peace and freedom, with neither classes  nor misery. 
Thank you for coming, this land will be forever yours. 

International Brigades,  1936-2006

  Abstract

The obsolete  way in which some anti-virus  products  are generating  malware  signatures,  is 
provoking that polymorphic malware detection becomes a tedious problem, when actually  it is 
not so hard. This paper describes the basics of a method by which the generic classification of 
polymorphic malware could be considered  as a trivial issue .

1. Introduction

Pattern recognition is continuosly present in our life. In fact, the vast majority of decission-
making  processes  performed  by  humans  is  based  on  some  type  of  object  recognition.  For 
example, if you want to buy an apple, you must know how an apple is, distinguishing it from a 
lemon or an orange. The colour and the shape of the fruit are important features in which your 
decision will be based on. 

The goal of pattern recognition is  to clarify these  mechanisms, and others more complicated, 
of decision-making processes and to automate these functions using computers. 

The rigth way to do this, requires to develop mathematical models of the objects based on their 
features or attributes. It also involves operations on abstract representations of what is meant by 
our common sense idea of similarity or proximity among objects.

Our goal is to develop a system for discriminating between specific polymorphic malware and 
other types of polymorphic malware or goodware. For this purpose, we will use executables 
generated by  Morphine [1], a widely used Polymorphic Packer/Crypter  developed by Holy-
Father and  Ratter:  HackerDefender [1] Rootkit developer and a member of the famous virus 
writers group 29a [12]  respectively.
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Morphine should not be considered as malware by itself. However, it cannot be discussed that a 
lot of malware uses it since Morphine is extrictily developed just to bypass anti-virus engines. 
Due to this fact, the presence of Morphine files spreading through networks or located on a 
server, should  trigger the alarms of administrator and IDS.

2.  First Approach

Previously,  we  have  introduced  the  concept  of   object  recognition  based  on  features  or 
attributes. Now  is the time to extract these features from the objects we want to recognize, in 
this case,  Morphine files.

In theory, polymorphic files will be different from one generation to another. Enough different 
to bypass static signatures. Nevertheless, we should see this fact with perspective, then asking 
ourselves

• Are they so different between each one?
• Different yes, but with respect to what?

The second question brings us the key to solve the problem. Yes, executables generated by 
Morphine are different, since the cipher-key is different, the polymorphic stub is different,..but 
not so different.

The Morphine stub,  beggining at  the executable entry point,  is generated by the Morphine 
polymorphic engine. No static bytes can be located so antivirus static-signatures are useless and 
then, Morphine detection and classification proccess  resorts toward emulation engines or “poor 
and anything but secure” static-signatures based on Import Table(PEiD), StackSize...  

Currently, Polymorphism seeing it from the perspective of pattern recognition, may be reduced 
to Oligomorphism, however under the point of view of some “pseudo-heuristic” methods used 
by anti-virus products, it will continue forever and ever being Polymorphism. 

Forget for a while everything you know about inherent features of polymorphism like register 
swapping...  Erasing  from   our  mind  these  bit-layer  changes  and  making  an  exercise  of 
abstraction, we come across instructions,  and  finally just assembly Mnemonics.   

OCR systems extract features from the pixels that conform a character, pixels are then  the main 
image information unit so it seems logic that we should extract features from the Mnemonics, 
the most important information unit inside executables.

It is the time to begin the development of  our own Neural Pattern Recognition System. 



3. Pattern acquisition and  Feature extraction
 
In  order  to  obtain  an  statistical  data  set  from the objects  analized,  we developed an static 
disassembler. This tool uses the disassembler algorithm known as Recursive Traversal [2].
Before continuing the description of the tool, we have to introduce how we have handled the 
branches in the execution flow.

Morphine uses the following  instructions for branch redirection.
• Call
• Jmp
• Jecxz/Loop (Usually together)

A bunch of conditional jumps are also used, however  we do not take care of them since no junk 
code  is  generated  between  conditional  jumps  and  the  offset  toward  it  jumps.  In  addition, 
significant  changes  in  the  flow  are  always  performed  by  the  three  previously  exposed 
instructions.

Knowing this,  the  tool  was reforced with an algorithm which follows these  branches,  also 
avoiding loops.

The algorithm stops  when:
1. Reaches 150 instructions analized
2. Falls in a loop. 

The goal of this tool  is to collect information about the   Mnemonics analized: Frequency, 
Relative Frequency, Correlation...

 [0x0040167e] push    eax
 [0x0040167f] fnop
 [0x00401681] pop     eax
 [0x00401682] mov     ebp,13D
 [0x00401687] xchg    ebp,edx
 [0x00401689] stc
 [0x0040168a] jmp     004016B0
 [0x004016b0] push    -6B0
 [0x004016b5] pop     ecx
 [0x004016b6] push    ebx
 [0x004016b7] call    004016D7
         -> Branch detected [ 0x004016d7 ]->[ 0x004016b0 ]
 [0x004016d7] pop     ebx
 [0x004016d8]  pop     ebx
 [0x004016d9] push    ebp
 [0x004016da] call    00401704
        -> Branch detected [ 0x00401704 ]->[ 0x004016b0 ]
         -> Branch detected [ 0x00401704 ]->[ 0x004016d7 ]     
 [0x00401704] add     esp,4

Fig 1.Morphine  Static-Disassembler  Tool  running

Summing  up :

       1.   Find sample Entry Point (Stub beggining)
2. Disassembler following branches and avoiding loops



3. Collect and update information about Mnemonics detected within the sample 
      4.    Analize Next Sample

Plotting  the  data  obtained,  we  will  see  how  outcomes  confirm  our  previous  theory  of 
Polymorphism≅ Oligomorphism

Graph1. Principal Mnemonics detected.

51 different  Mnemonics with a  significant  Frequency were detected.  As we can see in the 
Graph 1, this number does not vary although the number of samples  grows.

The Mnemonics detected are the following

"add"  "and" "call" "cdq" "clc" "cld" "cmc" "cmp" "dec" "fnop" "inc" "ja" "jbe"
"je" "jecxz" "jge" "jle" "jmp" "jnb" "jno" "jns" "jnz" "jo" "jpe" "jpo" "js"
"lea" "loop" "mov" "movs" "movzx" "neg" "nop" "not" "or" "pop" "push" "pushad"
"rol" "ror" "sal" "sar" "shl" "shr" "stc" "std" "stos" "sub" "test" "xchg" "xor"

Two curious outcomes were obtained:

1. Amount and type  Mnemonics detected .
 We cannot forget that we are analyzing 150 instructions as maximum. Goodware, will 

obtain a much lower amount of Mnemonics analyzing the same number of instructions. 
In addition, Mnemonics like “Fnop”, “cmc”, “cdq”... are not usually present in the first 
instructions, beggining at the entry point.

      2.   Relative Frequency ¹
As we can see in the following histograms, the frequencies obtained are very similar  
even using a huge threshold between populations.

¹. The Relative Frequency is calculated over the total number of instructions analized for a given population.
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PCA (Principal Components Analysis)  methods are beyond the scope of this paper. However, 
using the results obtained, we could perform an initial reduction of  the dimensional space of 
the Feature Vector, because of the high correlation encountered between Push-Pop mnemonics 
and others. I.e this correlation could have been theorically predicted just remembering some 
habitual features of  the polymorphism, I mean pseudo-nop blocks .

1. Inc esi 2. Push esi

Inc edi Push eax

Dec Esi Pop eax

Dec Edi Pop esi

4. Design of the Classifier  and  Pre-Processing

Let us we have defined our n-dimensional Feature Vector as X= {x1,x2,...xn} where n=51, that is, 
the number of Mnemonics. Thus, each pattern will be represented by its Feature Vector.
Before  training our  neural  classifier,  we  are  going to  do  a  pre-processing  into  the  Feature 
Vector.
Being  Fn  the Absolut Frequency  of the n-Mnemonic

 
 Fn > 0   ⇒ xn =   1  :     1 ≤  n ≤ 51 , xn ∈  X  

 Fn = 0     ⇒ xn =  -1  :    1 ≤  n ≤ 51 ,  xn ∈  X 

We will discriminate between Morphine files and others, so we have two classes: w1 and w2.

Our training pattern vectors would be as follows:

P={(X1,y1),(X2,y2),...(Xn,yn)}   

Being y the desired output for the n-training pattern. Obviously, the learning will be supervised 
since we can generate  training patterns for both w1 and w2 classes.

Why  Neural Pattern Recognition ?

MLP are universal aproximators,  in addition has been probed  to solve problems successful 
using limited data set. Thus, let us imagine a polymorphic worm spreading through internet, in 
the early stage of the massive infection, the initial amount of captured samples will be very 
limited so in order to release  as soon as possible an “intelligent signature” which would protect 
users, neither statistical nor structural pattern recognition could  be used.

Designing the Neural Network Topology

The dimension of the Feature Vector will be the number of input neurons in the first layer.
It is hard to calculate the  number of hidden units, cascade training algorithm can help  us to 
improve our task, however some authors[3] have proved some empirical rules. One of them is 
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that the number of hidden units is 10 times the number of output units plus one. More or less, 
this rule has been successfuly applied to our problem. So, we have a hidden layer with 12 units 
and finally an output unit because we are facing a binary classification. Both Input  and Hidden 
layer has Bias unit.

  Fig 2. Topology of the neural classifier.

5. Learning   algorithm and Activation Functions
Neural Networks are beyond the scope of this paper,however in order to allow the reader to  
take a full understand of the this part, some tips will be available

BackPropagation is the most widely used learning algorithm, however we will use  Resilient  
BackPropagation, RPROP [4] from now on, which improves some bad behaviour of the classical 
BackProp, in addition the convergence will be faster. 
RPROP does not use the magnitude of the derivate to update weights, indeed it uses the sign to 
decide it. In addition, the weights are  increased or decreased by two defined factors : η+  and η−  

Usually : 
• η+  = 1.2   limited by ∆max

• η−  = 0.5   limited by ∆min

 
The RPROP formula for the calculation of weitghs  would be as follows:

∂E              ∂E                                 ∆wij (t) = ∆wij (t-1) + η+ 

∂wij                    ∂wij                                                     wij (t)  = wij (t-1) + ∆wij 

                       ∂E              ∂E                                 ∆wij (t) = ∆wij (t-1) + η−

∂wij                    ∂wij                                                      wij (t)  = wij (t-1) + ∆wij

                       ∂E              ∂E                                  ∆wij (t) = ∆wij (t-1) 
                       ∂wij                    ∂wij                                                       wij (t)  = wij (t-1) + ∆wij

Tip
Remembering the basics of derivates and its  role in functions analysis. The meaning could be “a measure of a change” and the 
role, in this case, is to “inform” about the  evolution of the Error Function(E), which we want to minimize.

) {
) {{
) {



In c pseudo-code, the algorithm would be as follows: [4]

#define minimum(A,B) ( (A) < (B) ? (A) : (B) ) 
#define maximum(A,B) ( (A) > (B) ? (A) : (B) ) 

    sign (A)
    {
 if(A>0 ) return 1
 if(A<0) return -1
 return A
    }

As activation function, the smoothest, Symmetric Sigmoid for both Hidden and Output Layer. 
We choose it since   output values   as well as input are -1 or 1. Sigmoid Symmetric maps (-∞,∞) 
→ [−1,1]

Fig.3 Symmetric Sigmoid Function



A negative output should be considered as a Non-Morphine file while  positive output means 
that the pattern analyzed belongs to Morphine.

6. Training  and Experimental Results Obtained

In order to use Early Stopping [5]  we built up a data set of patterns for training, testing and 
validation.  This  method  allow  us,  not  only  to  reach  the  best  learning  rate,avoiding 
overfitting/underfitting,  also  we  can  detect  poor  data  set  divisions  which  could  lead  to 
overtraining. 

The best number of training patterns is about 350 samples, including negative patterns. We got 
the following results.

                       Graph 4. MSE Evolution with a Desired Error of  0.0001  

Training Testing Validation
Samples 350 2000 5000

Samples Class Misclassified Error (%)
5000 Morphine files 3 0,0006 
200 Goodware mixed with Upolyx 

polymorphic samples
0 0 

The percent  of success   in  both two classes  is   99,9% and 100%  respectively.
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7.  Conclusion

We should bargain for that only the basics  of this  method have been explained. However, 
experimental results obtained show a  high level of accuracy. Improving the system with better 
pre-processing , adding improved feature extraction, extending classes, or developing powerful 
post-processing would lead to a complete framework resulting in a intelligent infraestructure 
which could stop polymorphic worms, shellcodes...

This  method  could   be  applied  in  several  fields,  including  IDS,  maybe  an  snort  plugin, 
Antivirus, home-made  antivirus ;) 
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