
 GENERIC DETECTION AND CLASSIFICATION OF POLYMORPHIC
MALWARE USING NEURAL PATTERN RECOGNITION

Rubén Santamarta
ruben@reversemode.com
www.reversemode.com

Dedicated to all who lost their life far away from their families, struggling for an ideal of justice,
equality, peace and freedom, with neither classes nor misery.
Thank you for coming, this land will be forever yours.

International Brigades, 1936-2006

 Abstract

The obsolete way in which some anti-virus products are generating malware signatures, is
provoking that polymorphic malware detection becomes a tedious problem, when actually it is
not so hard. This paper describes the basics of a method by which the generic classification of
polymorphic malware could be considered as a trivial issue .

1. Introduction

Pattern recognition is continuosly present in our life. In fact, the vast majority of decission-
making processes performed by humans is based on some type of object recognition. For
example, if you want to buy an apple, you must know how an apple is, distinguishing it from a
lemon or an orange. The colour and the shape of the fruit are important features in which your
decision will be based on.

The goal of pattern recognition is to clarify these mechanisms, and others more complicated,
of decision-making processes and to automate these functions using computers.

The rigth way to do this, requires to develop mathematical models of the objects based on their
features or attributes. It also involves operations on abstract representations of what is meant by
our common sense idea of similarity or proximity among objects.

Our goal is to develop a system for discriminating between specific polymorphic malware and
other types of polymorphic malware or goodware. For this purpose, we will use executables
generated by Morphine [1], a widely used Polymorphic Packer/Crypter developed by Holy-
Father and Ratter: HackerDefender [1] Rootkit developer and a member of the famous virus
writers group 29a [12] respectively.

mailto:ruben@reversemode.com
http://www.reversemode.com/

Morphine should not be considered as malware by itself. However, it cannot be discussed that a
lot of malware uses it since Morphine is extrictily developed just to bypass anti-virus engines.
Due to this fact, the presence of Morphine files spreading through networks or located on a
server, should trigger the alarms of administrator and IDS.

2. First Approach

Previously, we have introduced the concept of object recognition based on features or
attributes. Now is the time to extract these features from the objects we want to recognize, in
this case, Morphine files.

In theory, polymorphic files will be different from one generation to another. Enough different
to bypass static signatures. Nevertheless, we should see this fact with perspective, then asking
ourselves

• Are they so different between each one?
• Different yes, but with respect to what?

The second question brings us the key to solve the problem. Yes, executables generated by
Morphine are different, since the cipher-key is different, the polymorphic stub is different,..but
not so different.

The Morphine stub, beggining at the executable entry point, is generated by the Morphine
polymorphic engine. No static bytes can be located so antivirus static-signatures are useless and
then, Morphine detection and classification proccess resorts toward emulation engines or “poor
and anything but secure” static-signatures based on Import Table(PEiD), StackSize...

Currently, Polymorphism seeing it from the perspective of pattern recognition, may be reduced
to Oligomorphism, however under the point of view of some “pseudo-heuristic” methods used
by anti-virus products, it will continue forever and ever being Polymorphism.

Forget for a while everything you know about inherent features of polymorphism like register
swapping... Erasing from our mind these bit-layer changes and making an exercise of
abstraction, we come across instructions, and finally just assembly Mnemonics.

OCR systems extract features from the pixels that conform a character, pixels are then the main
image information unit so it seems logic that we should extract features from the Mnemonics,
the most important information unit inside executables.

It is the time to begin the development of our own Neural Pattern Recognition System.

3. Pattern acquisition and Feature extraction

In order to obtain an statistical data set from the objects analized, we developed an static
disassembler. This tool uses the disassembler algorithm known as Recursive Traversal [2].
Before continuing the description of the tool, we have to introduce how we have handled the
branches in the execution flow.

Morphine uses the following instructions for branch redirection.
• Call
• Jmp
• Jecxz/Loop (Usually together)

A bunch of conditional jumps are also used, however we do not take care of them since no junk
code is generated between conditional jumps and the offset toward it jumps. In addition,
significant changes in the flow are always performed by the three previously exposed
instructions.

Knowing this, the tool was reforced with an algorithm which follows these branches, also
avoiding loops.

The algorithm stops when:
1. Reaches 150 instructions analized
2. Falls in a loop.

The goal of this tool is to collect information about the Mnemonics analized: Frequency,
Relative Frequency, Correlation...

 [0x0040167e] push eax
 [0x0040167f] fnop
 [0x00401681] pop eax
 [0x00401682] mov ebp,13D
 [0x00401687] xchg ebp,edx
 [0x00401689] stc
 [0x0040168a] jmp 004016B0
 [0x004016b0] push -6B0
 [0x004016b5] pop ecx
 [0x004016b6] push ebx
 [0x004016b7] call 004016D7
 -> Branch detected [0x004016d7]->[0x004016b0]
 [0x004016d7] pop ebx
 [0x004016d8] pop ebx
 [0x004016d9] push ebp
 [0x004016da] call 00401704
 -> Branch detected [0x00401704]->[0x004016b0]
 -> Branch detected [0x00401704]->[0x004016d7]
 [0x00401704] add esp,4

Fig 1.Morphine Static-Disassembler Tool running

Summing up :

 1. Find sample Entry Point (Stub beggining)
2. Disassembler following branches and avoiding loops

3. Collect and update information about Mnemonics detected within the sample
 4. Analize Next Sample

Plotting the data obtained, we will see how outcomes confirm our previous theory of
Polymorphism≅ Oligomorphism

Graph1. Principal Mnemonics detected.

51 different Mnemonics with a significant Frequency were detected. As we can see in the
Graph 1, this number does not vary although the number of samples grows.

The Mnemonics detected are the following

"add" "and" "call" "cdq" "clc" "cld" "cmc" "cmp" "dec" "fnop" "inc" "ja" "jbe"
"je" "jecxz" "jge" "jle" "jmp" "jnb" "jno" "jns" "jnz" "jo" "jpe" "jpo" "js"
"lea" "loop" "mov" "movs" "movzx" "neg" "nop" "not" "or" "pop" "push" "pushad"
"rol" "ror" "sal" "sar" "shl" "shr" "stc" "std" "stos" "sub" "test" "xchg" "xor"

Two curious outcomes were obtained:

1. Amount and type Mnemonics detected .
 We cannot forget that we are analyzing 150 instructions as maximum. Goodware, will

obtain a much lower amount of Mnemonics analyzing the same number of instructions.
In addition, Mnemonics like “Fnop”, “cmc”, “cdq”... are not usually present in the first
instructions, beggining at the entry point.

 2. Relative Frequency ¹
As we can see in the following histograms, the frequencies obtained are very similar
even using a huge threshold between populations.

¹. The Relative Frequency is calculated over the total number of instructions analized for a given population.

0

5

10

15

20

25

30

35

40

45

50

55

Mnemonics Vs Samples

Files
Mnemonics

Number of Samples growing linearly

Xor
Xchg
Test
Sub
Stos
Std
Stc
Shr
Shl
Sar
Sal
Ror
Rol

Pushad
Push
Pop
Or

Not
Nop
Neg

Movzx
Movs
Mov
Loop
Lea
Js

Jpo
Jpe
Jo

Jnz
Jns
Jno
Jnb
Jmp
Jle

Jge
Jecxz

Je
Jbe
Ja

Inc
Fnop
Dec
Cmp
Cmc
Cld
Clc

Cdq
Call
And
Add

0 5 10 15 20 25

Morphine Polymorphic Engine - Mnemonics Frequencies
Population: 10 Samples

Frequency

Xor
XchgTestSubStos

StdStcShr
ShlSarSalRor
RolPushadPush
PopOrNotNop
NegMovzxMovs
MovLoopLeaJs
JpoJpeJo
JnzJnsJno
JnbJmpJleJge

JecxzJeJbe
JaIncFnopDec

CmpCmcCld
ClcCdqCallAnd
Add

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5

Morphine Polymorphic Engine - Mnemonics Frequencies
Population: 5000 Samples

Frequency

PCA (Principal Components Analysis) methods are beyond the scope of this paper. However,
using the results obtained, we could perform an initial reduction of the dimensional space of
the Feature Vector, because of the high correlation encountered between Push-Pop mnemonics
and others. I.e this correlation could have been theorically predicted just remembering some
habitual features of the polymorphism, I mean pseudo-nop blocks .

1. Inc esi 2. Push esi

Inc edi Push eax

Dec Esi Pop eax

Dec Edi Pop esi

4. Design of the Classifier and Pre-Processing

Let us we have defined our n-dimensional Feature Vector as X= {x1,x2,...xn} where n=51, that is,
the number of Mnemonics. Thus, each pattern will be represented by its Feature Vector.
Before training our neural classifier, we are going to do a pre-processing into the Feature
Vector.
Being Fn the Absolut Frequency of the n-Mnemonic

 Fn > 0 ⇒ xn = 1 : 1 ≤ n ≤ 51 , xn ∈ X

 Fn = 0 ⇒ xn = -1 : 1 ≤ n ≤ 51 , xn ∈ X

We will discriminate between Morphine files and others, so we have two classes: w1 and w2.

Our training pattern vectors would be as follows:

P={(X1,y1),(X2,y2),...(Xn,yn)}

Being y the desired output for the n-training pattern. Obviously, the learning will be supervised
since we can generate training patterns for both w1 and w2 classes.

Why Neural Pattern Recognition ?

MLP are universal aproximators, in addition has been probed to solve problems successful
using limited data set. Thus, let us imagine a polymorphic worm spreading through internet, in
the early stage of the massive infection, the initial amount of captured samples will be very
limited so in order to release as soon as possible an “intelligent signature” which would protect
users, neither statistical nor structural pattern recognition could be used.

Designing the Neural Network Topology

The dimension of the Feature Vector will be the number of input neurons in the first layer.
It is hard to calculate the number of hidden units, cascade training algorithm can help us to
improve our task, however some authors[3] have proved some empirical rules. One of them is

{∀P ∈ Ω

(__ ⇒ }
(__

__(t-1)*

(t-1)*__

(t)>0

(t)<0 ⇒ }
((t-1)*__ __ (t)=0 ⇒ }

that the number of hidden units is 10 times the number of output units plus one. More or less,
this rule has been successfuly applied to our problem. So, we have a hidden layer with 12 units
and finally an output unit because we are facing a binary classification. Both Input and Hidden
layer has Bias unit.

 Fig 2. Topology of the neural classifier.

5. Learning algorithm and Activation Functions
Neural Networks are beyond the scope of this paper,however in order to allow the reader to
take a full understand of the this part, some tips will be available

BackPropagation is the most widely used learning algorithm, however we will use Resilient
BackPropagation, RPROP [4] from now on, which improves some bad behaviour of the classical
BackProp, in addition the convergence will be faster.
RPROP does not use the magnitude of the derivate to update weights, indeed it uses the sign to
decide it. In addition, the weights are increased or decreased by two defined factors : η+ and η−

Usually :
• η+ = 1.2 limited by ∆max

• η− = 0.5 limited by ∆min

The RPROP formula for the calculation of weitghs would be as follows:

∂E ∂E ∆wij (t) = ∆wij (t-1) + η+

∂wij ∂wij wij (t) = wij (t-1) + ∆wij

 ∂E ∂E ∆wij (t) = ∆wij (t-1) + η−

∂wij ∂wij wij (t) = wij (t-1) + ∆wij

 ∂E ∂E ∆wij (t) = ∆wij (t-1)
 ∂wij ∂wij wij (t) = wij (t-1) + ∆wij

Tip
Remembering the basics of derivates and its role in functions analysis. The meaning could be “a measure of a change” and the
role, in this case, is to “inform” about the evolution of the Error Function(E), which we want to minimize.

) {
) {{
) {

In c pseudo-code, the algorithm would be as follows: [4]

#define minimum(A,B) ((A) < (B) ? (A) : (B))
#define maximum(A,B) ((A) > (B) ? (A) : (B))

 sign (A)
 {
 if(A>0) return 1
 if(A<0) return -1
 return A
 }

As activation function, the smoothest, Symmetric Sigmoid for both Hidden and Output Layer.
We choose it since output values as well as input are -1 or 1. Sigmoid Symmetric maps (-∞,∞)
→ [−1,1]

Fig.3 Symmetric Sigmoid Function

A negative output should be considered as a Non-Morphine file while positive output means
that the pattern analyzed belongs to Morphine.

6. Training and Experimental Results Obtained

In order to use Early Stopping [5] we built up a data set of patterns for training, testing and
validation. This method allow us, not only to reach the best learning rate,avoiding
overfitting/underfitting, also we can detect poor data set divisions which could lead to
overtraining.

The best number of training patterns is about 350 samples, including negative patterns. We got
the following results.

 Graph 4. MSE Evolution with a Desired Error of 0.0001

Training Testing Validation
Samples 350 2000 5000

Samples Class Misclassified Error (%)
5000 Morphine files 3 0,0006
200 Goodware mixed with Upolyx

polymorphic samples
0 0

The percent of success in both two classes is 99,9% and 100% respectively.

0,00000

0,02500

0,05000

0,07500

0,10000

0,12500

0,15000

0,17500

0,20000

0,22500

0,25000

0,27500
MSE evolution

MSE

10 20

Epochs

7. Conclusion

We should bargain for that only the basics of this method have been explained. However,
experimental results obtained show a high level of accuracy. Improving the system with better
pre-processing , adding improved feature extraction, extending classes, or developing powerful
post-processing would lead to a complete framework resulting in a intelligent infraestructure
which could stop polymorphic worms, shellcodes...

This method could be applied in several fields, including IDS, maybe an snort plugin,
Antivirus, home-made antivirus ;)

8. References

[1] The Hacker Defender Project
 <www.hxdef.org> June 13, 2006

[2] Disassembly Challenges
 <http://www.usenix.org/events/usenix03/tech/full_papers/prasad/prasad_html/node5.html>
 June 13, 2006

[3] Somaie A.A., Badr A., Salah, T.: Aircraft image recognition using back-propagation. Radar,
 CIE International Conference on Proceedings, Oct 15-18, 498-501

[4] Riedmiller M., Braun H.: A direct adaptive method for faster backpropagation learning: the
 RPROP algorithm. Neural Networks, IEEE International Conference on. Vol. 1, 28 March –
 1 April (1993) 586-591

Polymorphic samples

Feature Extraction

Pre-processing

Neural Classifier

Class 1

Class2

Post-Processing

http://www.usenix.org/events/usenix03/tech/full_papers/prasad/prasad_html/node5.html
http://www.hxdef.org/

[5] Wikipedia: What is Early Stopping?
 <http://en.wikipedia.org/wiki/Early_stopping> June 13, 2006

[6] J.P. Marques de Sá: “Pattern Recognition – Concepts, Methods And Applications”
 Springer, 2001.

[7] Michael A.Arbib: “The HandBook of Brain Theory and Neural Networks”
 The MIT Press, 2003.

[8] Nikola K. Kasabov: “Foundations of Neural Networks, Fuzzy Systems, and Knowledge
 Engineering”
 The MIT Press, 1998.

[9] Sergios Theodoridis, Konstantinos Koutroumbas: “Pattern Recognition” 2th Edition.
 Elsevier, 2003

[10] David J.C. MacKay : Information Theory, Inference, and Learning Algorithms.
 2002.

[11] FANN, Fast Artificial Neural Network Library
 <http://leenissen.dk/fann/>, June 13, 2006

[12] 29a Labs.
 <http://vx.netlux.org/29a/>, June 13, 2006

http://vx.netlux.org/29a/
http://leenissen.dk/fann/
http://en.wikipedia.org/wiki/Early_stopping

