J Comput Virol (2008) 4:127-136
DOI 10.1007/s11416-007-0067-8

SSTIC 2007 BEST ACADEMIC PAPERS

Internet attacks monitoring with dynamic connection redirection

mechanisms

Eric Alata - Ion Alberdi - Vincent Nicomette -
Philippe Owezarski - Mohamed Kaaniche

Received: 5 January 2007 / Revised: 15 July 2007 / Accepted: 8 September 2007 / Published online: 2 October 2007

© Springer-Verlag France 2007

Abstract High-interaction honeypots are interesting as
they help understand how attacks unfold on a compromised
machine. However, observations are generally limited to the
operations performed by the attackers on the honeypot itself.
Outgoing malicious activities carried out from the honeypot
towards remote machines on the Internet are generally disal-
lowed for legal liability reasons. It is particularly instructive,
however, to observe activities initiated from the honeypot
in order to monitor attacker behavior across different, pos-
sibly compromised remote machines. This paper proposes
to this end a dynamic redirection mechanism of connec-
tions initiated from the honeypot. This mechanism gives the
attacker the illusion of being actually connected to a remote
machine whereas he is redirected to another local honeypot.
The originality of the proposed redirection mechanism lies in
its dynamic aspect: the redirections are made automatically
on the fly. This mechanism has been implemented and tested
on a Linux kernel. This paper presents the design and the
implementation of this mechanism.

E. Alata (<) - I. Alberdi - V. Nicomette - P. Owezarski -
M. Kaaniche

LAAS-CNRS, University of Toulouse, Toulouse, France
e-mail: ealata@laas.fr

1. Alberdi
e-mail: ialberdi @laas.fr

V. Nicomette
e-mail: nicomett@laas.fr

P. Owezarski

e-mail: owe @laas.fr

M. Kaéaniche

e-mail: kaaniche @laas.fr

1 Introduction

Nowadays, honeypots have become a very common tool to
monitor and analyze malicious activities on the Internet. The
various implementations that have been proposed so far differ
by the level of interaction and the possibilities offered to the
attackers. The higher the interaction level is (i.e., the more
faithfully a honeypot can simulate a ‘real” environment), the
more possibilities are offered by the honeypot to observe an
entire attack.

For example, a honeypot such as honeyd [1] offers lim-
ited possibilities to the attackers, as generally only a subset of
services are partially emulated. The emulated services can-
not be used to compromise the honeypot or to attack other
machines on the Internet. Nevertheless, even when the inter-
action level is low, the information recorded by the honeypot
provides useful insights about the services that are frequently
targeted by the attackers. In particular, the development of
more sophisticated honeypots aimed at the detailed analysis
of attacker behavior could be focused on these services.

There are also other honeypot implementations that offer
higher levels of interactions. These run real operating sys-
tem services and application software, which makes them
riskier than low interaction honeypots. It is noteworthy that
these two types of honeypots (generally referred to as low-
and high-interaction honeypots) are complementary. In addi-
tion, another category called hybrid honeypots combining the
advantages of low- and high-interaction honeypots has been
proposed in [2,3].

With the current honeypot techniques mentioned above,
it is impermissible for legal liability reasons to bounce from
the honeypot machine to compromise or run attacks against
third party machines. This limitation precludes the possi-
bility of observing complete attack scenarios unfold on the
Internet. Moreover, it might also have an impact on attacker

@ Springer

128

E. Alata et al.

behavior: attackers might stop their attack and decide to never
use again the honeypot for future malicious activities. To
address this limitation, some implementations limit the num-
ber of outgoing connections from the honeypot through the
use of “rate limiting” mechanisms. Although this solution
allows more information about the attack process to be cap-
tured, it remains insufficient and does not address the liability
concerns.

In the context of our research work dealing with the obser-
vation and analysis of attack processes, we have developed
a VMWare-based high-interaction honeypot [4,5] and
deployed it on the Internet. The data collected from the exper-
iments allowed us to obtain interesting information about
successful intrusions and attack attempts targeting SSH ser-
vices. For these experiments, outgoing connections were lim-
ited to avoid potential attacks against third party machines.
Only outgoing connections towards port 80 were allowed,
under strict control. However, during these experiments, sev-
eral connection attempts from the honeypot to the Internet
have been observed.

Clearly, it is important to investigate new solutions
which allow such connections without harming third-party
machines. The mechanism presented in this paper is aimed
at fulfilling this objective. The proposed technique consists
of redirecting outgoing connections to a local machine, while
making the attackers believe that they are able to bounce out-
side the honeypot.

The idea of connection redirection in the context of honey-
pots has been investigated in various studies, e.g. [6,7,3]. For
example, the Collapse architecture presented in [6] integrates
mechanism to forward traffic malicious targeting the end sys-
tem of a local network to the Collapsor Center. However, their
mechanism is not designed to address the problem of redi-
rection of outgoing connections addressed in this paper. The
study presented in [7] follows a similar objective to ours.
However, the proposed solution is less generic. In fact, [7]
proposes a way to redirect identified malicious traffic to a
honeypot by hijacking TCP sessions. Their implementation
requires the modification of the TCP/IP stack of the honey-
pot. Our implementation is aimed to be totally compliant with
the standard TCP/IP interface and furthermore to be more
generic by including not only TCP but also UDP, ICMP, etc.
We can also mention the hybrid honeypot architecture pro-
posed by [3]. The redirection mechanism presented in their
study is used to support the analysis of malware and their
propagation. However, little detail are provided about how
the mechanism is implemented.

This paper is structured into six sections. Section 2
presents the main design principles and architecture of the
proposed redirection mechanism implemented in the Linux
kernel. Section 3 describes the implementation of the mech-
anism. Section 4 presents some experimental results illus-
trating the performance of the mechanism. In particular, we

@ Springer

analyze the overhead incurred by this mechanism consider-
ing TCP sessions establishment times as an example. Sec-
tion 5 outlines two experimental studies aimed at validating
the proposed mechanism. The last section presents some con-
clusions and future work.

2 Principles

We have designed and implemented a selective mechanism
which allows outgoing Internet connections from the hon-
eypot to be automatically and dynamically redirected. The
goal is to make the attacker believe he can connect from
the honeypot to hosts on the Internet, whereas in reality, the
connections are simply redirected towards another honeypot.
Hence, the originality of our method is the dynamic nature
of this redirection mechanism, as discussed in Sect. 1.

Let us take the example presented in Fig. 1. In this exam-
ple, b, c and d are honeypots and a, e, f and g are machines on
the Internet. The honeypots b, ¢ and d are virtual machines
running on a real host whose kernel has been modified to
implement our redirection mechanism. An attacker from
Internet host a breaks into honeypot b (connection 1). From
this honeypot, the attacker then tries to break into Internet
host e thanks to connection 2. This connection is blocked by
our mechanism.

The attacker then tries another connection 3 towards Inter-
net host f. This connection is accepted and automatically
redirected towards honeypot c. The attacker is under the illu-
sion that his connection to f has succeeded, whereas it has
merely been redirected to another honeypot. The attacker

Connection

Dropped connection

Redirected connection
Simulated connection

Fig. 1 Example of redirection

Internet attacks monitoring with dynamic connection redirection mechanisms 129

Fig. 2 Redirection architecture

dialog_handler

dialog_handler | | dialog. handien

/ it
\ // -~
- - ~
-—
/ ’c;i-alog_tracker - ~
—~ A
il 7 |
Ve
/libnetﬁlter_queue & libnetfilter_conntrack
G
'd
[User-space
/ I Kernel-space
/ conntrack raditection nat
/ ety ,~=~ module PRt
, ' \ \ \ 1Y 0 /
/ e Be) L
\ \ y
I/ |‘.‘ \'n‘ \‘\\ \ :,'J!:: l"l!::
’ f‘ ‘l l‘\ "%\\ .= a' IJ["\ r' ” ‘\
l ’ ._____..‘} \h.::'--.-—": N ,' \.___-___,-’/ ™~ - _____.
\ "I TR J\ PRl B i o
\ ~] —
— r
\ e e — — .-P:, /
=~ I~ — — — — — " PREROUTING

tries to establish another connection 4 towards Internet host g.
Similar to connection 3, this connection is accepted and auto-
matically redirected towards honeypot d. The attacker finally
initiates another connection (5) to Internet host g from host
f (in reality, from host c). This connection is also accepted
and is redirected towards honeypot d.

This mechanism is interesting because it allows attacker
activity on different hosts to be observed. In general, a hon-
eypot allows the activity of the attacker to be observed at only
one side of the connection. The other connection end is the
machine that interacts with the honeypot. For all redirected
connections, we can observe an attacker on both connection
ends. In the previous example, the attacker establishes a con-
nection between host b and host ¢ and it is possible to observe
both hosts b and c.

On the other hand, it is possible for a clever attacker to
see through the hoax. For example, in Fig. 1, suppose the
attacker already controls the machines a, e and f. He can then
check, after establishing connection 3, if the machine he is
connected to is really machine f. This limitation does exist;
however, we believe that many attackers will not systemati-
cally do such checks, in particular if the attack is carried out
by non-sophisticated automatic scripts. Just as honeyd pro-
vides us some useful albeit limited information, more attack
information will be gleaned from systems that implement our
redirection mechanism than those that do not.

Of course, the redirection mechanism must be as reli-
able as possible so that we can collect data which faithfully
captures attacker behavior. Thus, the implementation of this
mechanism must have the following properties:

e it must be adaptable according to the needs of the admin-
istrator,

e it must be as elusive as possible in order to allay suspicions
of the attacker,

e it must not increase in a visible way the latency of the
communications.

The following section presents an implementation of our
redirection mechanism aimed at meeting these requirements.

3 Implementation

The dynamic redirection mechanism has been implemented
in the Gnu/Linux operating system. Nevertheless, it has been
designed in such a way that it can easily be adapted to other
systems.

Asillustrated in Fig. 2, the mechanism includes three com-
ponents:

e the redirection module (inside the kernel) extracts
packets,

@ Springer

130

E. Alata et al.

processes

reception emission
OO I I
INPUT OUTPUT
local
destination
| outer | O] [
PREROUTING | destination FORWARD POSTROUTING

reception emission
[hook
O string
— path

Fig. 3 Netfilter hooks and packet processing

e the dialog_handler decides whether the extracted
packets must be redirected or not,

e the dialog_tracker is a link between the
redirection module and the dialog_handler.

Our redirection mechanism implementation is thus situ-
ated both in the kernel and user spaces. It would have been
possible to implement it exclusively in user or kernel space.
However, the first solution introduces an unacceptable latency
which can be used for detection purposed by an attacker
(during scan attacks, for example). The second solution is
less flexible than our approach and does not allow the use of
tools like databases for example (see later on), even if it is
probably better from a performance point of view.

In the following subsections, we present each of the three
components.

3.1 The redirection module

The redirection module must extract packets in such a way
that they can be redirected or blocked. To do so, our module
interacts with the net £i1 ter component of the kernel [8].
This component is a firewall which includes five chains. Each
chain is used to intercept and possibly modify packets at
different stages on their way through the IP stack (see Fig. 3):

e INPUT: chain processing packets addressed to the firewall

e OUTPUT: chain processing packets emitted by the firewall

e FORWARD: chain processing packets going through the
firewall

e PREROUTING: chain processing, before they are routed,
packets going through the firewall

e POSTROUTING: chain processing, after they are routed,
packets going through the firewall

A set of particular functions named hooks is associated
with each chain. Each hook has a specific role and processes

@ Springer

the packets that pass through the chain. For example, the hook
conntrack updates the state-machine of the connection
corresponding to the processed packet. The hooks associated
with a chain are ordered by priority. Hence, in a chain, the
hook with the highest priority processes packets before all
others and the hook with the lowest priority processes packets
after all others. Adding kooks by inserting a module in the
kernel is a simple way to enrich netfilter.

In our implementation, we benefit from the already exist-
ing hooks of netfilter (see Fig. 2). More precisely, we
use the DNAT hook’s ability to modify packet destination
addresses. The priority of this hook is NF_IP_PRI_NAT _
DST = —100 in the PREROUTING chain. We also benefit
from the conntrack hook (which associates a state-
machine per pending connection) because it automatically
identifies the first packet of a new connection.

In order to implement our redirection mechanism, we have
developed two hooks and inserted them between the hook
conntrack and the hook DNAT (which changes the desti-
nation address of a packet) in the PREROUTING chain. Our
first hook is in charge of extracting packets and sending them
to the dialog_tracker in user space, in order to decide
whether they have to be redirected or not, whereas our second
hook is in charge of tagging the corresponding connections as
“redirected” if the decision to redirect them has been taken.
We do not systematically redirect all the connections initiated
from the honeypot to the Internet. Most of them are blocked
and only a few of them are redirected.

In fact, thanks to the hook conntrack of netfilter, the
redirection of a whole connection only requires the redirec-
tion of the first packet of this connection (the other packets
are automatically processed like the first one). Thus, for each
connection, our first hook extracts only the first packet and
sends it to the dialog_tracker.1 Then, the dialog_
tracker forwards the packet to the dialog_handler,
which decides if this packet has to be redirected or blocked.
This decision may be evaluated according to different rules
such as for example “a connection upon 10 or 100 is redi-
rected, the others are blocked”.2

When the decision is made, the dialog_tracker
informs the kernel module through a net1ink socket that
the corresponding connection has to be tagged as “redirected”
and the packet is re-injected into the next hook of the chain,
which is our second hook. This second hook is simply in
charge of tagging the corresponding connection as “redi-
rected”. The packet is then re-injected in the list of hooks
of the corresponding chain. One of them is the hook DNAT
which indeed redirects packets of connections tagged as

! The first packet can be easily identified because the hook
conntrack which is just before our first hook tags the first packet
of each connection as NEW.

2 Definition of this decision process is part of future work.

Internet attacks monitoring with dynamic connection redirection mechanisms 131

“redirected”, by modifying the destination address of the
packet (the destination address is changed to the address of
one of our honeypots).

In order for this modification to be done correctly, the
DNAT hook must be configured. This configuration is made
through a rule via the iptables command. For exam-
ple, the following rule configures this hook to redirect all
packets of a connection tagged as “redirected” with the tag
0x03FEA8CO to the machine 192.168.254.3:

iptables -t nat -A PREROUTING \
-m connmark --mark Ox03FEA8CO -3j \
DNAT --to-destination 192.168.254.3

In order to invoke the dialog_tracker from the ker-
nel space, we used the 1ibnetfilter_gueue library.
Indeed, this library already implements:

e the “theft” of packets to send to the user space,

e the management of the list of the stolen packets,

e the replication of the content of the nf_reinject func-
tion enabling to reinject a packet previously stolen, after a
decision is taken for it.

Thanks to the 1ibnetfilter_queue library, we can
minimize our efforts. When a decision is made for a packet,
the latter automatically goes on its way, from the hook whose
priority is just higher than that of our first hook.

3.2 The dialog_tracker

The dialog_tracker component establishes a link
between the redirection module and the dialog_handler.
This way, the implementation of the dialog_handler
is totally independent of the architecture and the operating
system. The interactions between the dialog_tracker
and the kernel are implemented by a netlink
socket and functions of the libnetfilter_queue
and libnetfilter_ conntrack libraries. The
libnetfilter_conntracklibrary enables auserspace
program to be notified when connections are created or
destroyed. The interactions between the dialog_
tracker and the dialog_handlers are implemented
by a AF_INET socket.

The dialog_tracker receives a verdict request
through the 1ibnetfilter_qgueue library. The request
is formatted to be readable by the dialog_handler. The
request content determines a dialog_handler and the
request is forwarded to it. The dialog_handler responds
with a verdict (packet reject or redirected), which is returned
through the 1ibnetfilter_queue library.

The dialog_tracker receives an event from the
libnetfilter_conntrack library each time a

connection is created or destroyed. This event is format-
ted to be readable by the dialog_handler. Again, event
content determines which particular dialog_handler is
selected to receive the event.

At any moment, one of the dialog_handlers may
decide to add or remove information in the memory cache of
the kernel redirection module. The information is received
by the dialog_tracker through a AF_INET socket. It
is sent to the redirection module through a net1ink socket.

The dialog_handlers and the dialog_tracker
may be executed on different machines. In that case, the
packets allowing these components to communicate cross
the PREROUTING chain. The redirection module intercepts
them. Since these packets are needed to support the commu-
nication inside our redirection mechanism, the redirection
module must not reject them or send them to the
dialog_tracker. To this end, the dialog_tracker
has been extended to upgrade the redirection module so that
it can accept these packets.

3.3 The dialog_handler

Thedialog_handler componentdecides how to proceed
with the intercepted packets. Several algorithms can be used
for this purpose. All have two inputs: the packet, as well as
the historical information recorded in a database.

Let us justify the existence of such a database. The redi-
rection decision could have been taken by the redirection
module in the kernel space. By implementing it in the user
space, we can use historical information stored in a database
for our redirection mechanism. For example, if an attacker
is redirected towards a particular IP address, it is important
that this attacker be redirected towards the same IP address
if he comes back to our system a few days later. This partic-
ular association (IP addresses of the attacker/IP address of
the redirection) must be stored in a database. If the redirec-
tion decision was implemented in the redirection module, we
could not benefit from the use of databases (it is not possi-
ble from the kernel space) and this would prevent us from
recording useful information.

The consistency of the redirection mechanism strongly
depends on the algorithms used to make decisions about the
packets. In some cases, this decision is not particularly easy
to make. Let us present two examples: when two connec-
tions, initiated from two different IP addresses, try to con-
nect to the same IP address, what decision must be made by
the dialog_handler? Two different IP addresses on the
Internet may be used by the same attacker.

As a consequence, we made the following choice: all con-
nections towards the same IP address of Internet must be redi-
rected towards the same honeypot and connections towards
different IP addresses of Internet must be redirected towards
different honeypots. As we cannot redirect all Internet IP

@ Springer

132

E. Alata et al.

addresses, we choose to redirect only a subset of IP addresses.
Different strategies may be used to select said subset. This
topic is beyond the scope of this paper and is part of future
work.

4 Performance evaluation

One of the main issues raised by the redirection mechanism
is the necessary transparency from the end user’s® perspec-
tive. It is obvious that the modifications implemented on
netfilter, together with the communications between
the user and kernel spaces, may slow down network connec-
tions. Therefore, it is important to evaluate the latency intro-
duced by our mechanism and to ensure that the overhead
is sufficiently low as to prevent detection of the redirection
mechanism by the attacker.

The management of new session establishment attempts is
the most time-consuming part of our redirection mechanism.
Once the verdict for a given session has been given (i.e redi-
rect the flow or not), most of the work is subsequently done
by a single process in kernel space. In contrast, new ses-
sion management involves cooperation between processes
that run in both the user and kernel spaces.

Thus, in order to estimate the latency due to the redirection
mechanism, it is important to analyze the performance of our
mechanism during its most time consuming phase.

The mechanism is particularly stressed during network
scans. First, we had to implement scans in a sufficiently effi-
cient way so that the latency generated by the mechanism
would be perceptible: Were the scan too slow, we would fail
to see discernable latency.

We discuss different alternatives for implementing net-
work scans and estimating experimentally the latency
incurred by the redirection mechanism.

Commonly used scanning tools like nmap were not fast
enough to stress our application which is why we devel-
oped our own algorithm. We considered the following case:
Network scan of N,gq4ress different addresses, a given TCP
port, and simulation of nj,,5; available among these addresses.
We decided to send a single SYN segment to each address,
and considered a host unavailable if we did not receive any
answer after T;;meour Seconds.

Unless np0st = Naddress, at least one of the timeouts will
expire, which implies a lower bound for the duration of such
a scan blnf = Ttimeour-

We can distinguish two ways of sending SYN segments:

1. Launch njyeqq connection attempts in parallel and wait
for the verdicts of these connections before launching the

next ones.

3 By user we mean blackhat or software developed by blackhats.

@ Springer

Table 1 Evaluation of the two strategies for the second method

Naddress Tscan (s)
28 4

9 4.33

210 7

ol 12.3

212 23.5

213 60.5

2. Launch the Ngg4ress connection attempts one after the
other without waiting for verdicts. Then, analyze pack-
ets once they arrive, or consider a given host unavailable
once Tyimeour Second elapsed since the sending of the cor-
responding SYN segment.

With the first method, if we have N, 44,55 parallel threads
and assume that at least one timeout will expire, by, can
eventually be reached. However, this solution may not be
scalable. For example, the Microsoft Windows Thread API*
imposes a limit of npreqq < 2,028. We therefore need to
equally distribute the N,g4re5s addresses among the n¢preqq
threads. If we do the following Euclidean division, we obtain:

Naddress = q X Npread +1 0 <1 < Npread

Therefore, if we assign g + 1 addresses to the first r
threads® and ¢ to the remaining ones, we can conclude that
a scan where the timeout always expires will last more than
q X Tiimeour, and that nypreqq threads will be necessary to
obtain this value.

If we implement the scan according to the second method,
the main difficulty resides in the management of timers expi-
ration. We need to store N,44ress data structures in the worst
case. In addition, the complexity of the associated algorithm
is high. As a result, the necessary time to manage Nggdress
timers can be higher than the one necessary to manage two
times % timers, by scanning the first half, and then the
second half of the N,44,¢5s addresses.

We experimentally evaluated these two strategies consid-
ering different values for Ny g4,e5s from 28 t0 213, The results
for the second method are presented in Table 1.

We notice that until Nyggress < 212» Tscan(Naddress) <
2 X Tscan

ranges, itis more efficient to launch one complete scan instead

(%). This result means that in those scan

4 http://msdn2.microsoft.com/en-us/library/ms682453.aspx.

3 Possible because r < n;jread-

http://msdn2.microsoft.com/en-us/library/ms682453.aspx

Internet attacks monitoring with dynamic connection redirection mechanisms 133

Table 2 Evaluation of the latency

Naddress Tscan Without redirection (s) Ty.q, With redirection (s)
28 3.0 3.5
20 4.5 5.0
210 7.0 6.5
P 12.0 13.0
212 23.5 26.0
213 48.5 54.5
214 93.0 114.0
215 117.5 255.5
216 219.0 673.5

of launching two consecutive ones, each for each half of the
considered address range. However, this is no longer true
starting from Nyggress = 213 Therefore, we chose to launch
at most 2'2 simultaneous scans in the following experiment.

We implemented the two scanning methods discussed
above in a C program that was executed on the Windows
XP SP1 operating system with the register value

MacTchestransmissions6 assigned to 0, the default
value 35 t0 Tyimeour> Mhost = 3 and Nygdress € {28, ceey 216}‘
We used:

1. The Thread and Winsocket API of Microsoft
Windows using synchronous SOCK_STREAM sockets
for the first method.

2. The Microsoft Windows API and asynchronous
SOCK_STREAM Winsockets for the second method.

This system was executed on the QEMU virtual machine
with 128 MB RAM capacity. The host system was a 3.00 GHz
Pentium 4 with 1GB of RAM, running a 2.6.19 Linux
kernel with the kgemu kernel module. It used bridged
tap devices for network access to the virtual system. We
assigned the maximum priority to the QEMU process with
nice.

We obtained the following results with the second method,
reported in Table 2.

Compared to the first method discussed in the beginning of
this section (i.e., parallel execution of 7;p,¢q45), We demon-
strate the efficiency of the second method by means of case
Nadaress = 2'6. In keeping with the previous notation, we
have Tiinmethodl > q X Tiimeous With ¢ = L%J
So to obtain the same scanning time 7., as the second
method, we should roughly have: nspreqas = Naddress

TSC(Z)‘I
Tiimeour- With Tyeq, = 219.0s the numerical computation
gives nipreaqa = 897, which is not implementable in our

© This ensures that a single SYN is sent.

experimental platform.” The first observation we can make
is that by, s is reached for Nygdress = 28 and that | Tscan —
byny| then increases.® We should, however, evaluate the time
Tsending needed to send Ngggress SYN segments, as
well. If the last scanned host is not available, b,y =
Tsending (Naddress) + Trimeour» and therefore the new | Tscqn —
byuy| should decrease.

However, our program was not designed towards this opti-
mal value; just enough speed to express the latency of our
redirection mechanism. With this scanning method, we see
that until Nyggress = 2!2, the proposed mechanism does
not incur a significant overhead from the performance point
of view. Indeed, the execution times with and without con-
nection redirection are very close. The difference, generally
related to the experimental conditions, is not significant.

5 Experiments

This section describes two experimental studies that have
been set up to validate and illustrate the usefulness of the
redirection mechanism described in this paper.

5.1 Malware execution observation

As described in Fig. 4, the first experiment concerns botnets
infiltration by executing and observing in a sandbox malware
downloaded from the Nepenthes honeypot [9].

A botnet is a network of compromised computers that
can receive orders from a controller to launch, among other
things, distributed attacks. Most of the time, compromised
machines and the controller communicate by using a protocol
similar to /RC. Our observation methodology consists in first
identifying the Command and Control flows associated
to a malware instance by redirecting all the packets from the
malware to a machine we control [10] (step 1). In a sec-
ond step, we launch this malware by letting such Command
and Control flows communicate with the Internet (step
2:1), and observe the attack process unfolding by redirecting
the flows received from the attacker and by executing the
malware (step 2:2).

‘We chose to execute the malware on an instance of QEMU
with Microsoft Windows XP OS installed. We also added two
honeypots (M3 and M4) on two other QEMU processes to
simulate the vulnerabilities on two different targets:

7 With more than Nmax_thread = 64 threads, one scanning thread fin-
ishes its job whereas others have not started their execution yet. This
results in a consecutive execution of some threads whereas we want
them to run concurrently. Therefore launching more than 7,4y threaa
scanning threads is useless in our platform.

8 For the sake of comparison, the reader should know that with nmap the
scanning time measured for Nyggyess = 210 §553.755, to be compared
to 7s with our algorithm.

@ Springer

134

E. Alata et al.

Fig. 4 Sandbox

Services

simulation
-DNS

- C&C channel

Nepenthes,
@lP_B

1. M3 corresponds to a low-interaction honeypot
(Nepenthes) to see if the level of interaction is high enough
to correctly simulate the vulnerability and hence enable a
successful attack.

2. M4 is a high-interaction honeypot (Windows XP SPI) to
hedge for the case when the low-interaction honeypot fails
to correctly simulate the vulnerability.

We connected those virtual machines with bridged
tap devices, with the following addresses: @IP_A (the
malware) M1, @IP_B M3, @IP_C M4.

The malware has Internet access for Command and
Control and for DNS flows only. Those flows are source
NATted to a public / P1 address. The flows targeting TCP
{135, 139, 445} ports are handled by our redirection mecha-
nism, and others are blocked.

After connecting to an /RC server located at a non-standard
TCP IRC port(5190), the malware instance received the fol-
lowing order:

i

" ca 6—”'\&Ittacker
{_ channel J

M — . —

5 8 T .
TR =~ Identified
Sl = "“{J&C flows
. Step2:1
O ". 2 Traffic
,1 hijacking
~

Flow identification, or

service emulation

Propagation - Gateway,
attempts i @IF1
- r Step 2:2
s Malware
- execution
¥ Windows Xp 5P1, simulator
@: IP_C

@P_A

connection attempts to both of the honeypots. After notic-
ing that two addresses had TCP port 135 open, two exploits
targeting the honeypots were successfully sent to the two

honeypots.
Finally the malware reported those successes on the
Command and Control channel, by numbering the

number of successes:’

PRIVMSG #last :-04dcom2.04c- 1. Raw transfer to @IP_B complete.
PRIVMSG #last :-04dcom2.04c- 2. Raw transfer to @IP_C complete.

Thanks to the redirection mechanism, we could partly
understand an encoded Command and Control chan-
nel and observe in more detail the resulting behavior of the
malware.

The reader should notice that what happened during our
experiment could rouse the suspicion of the botnet adminis-
trator: After scanning an address range, its malware instance
claimed that it managed to compromise two addresses that
were not part of the range.!’ Here again, our mechanism
could be improved.

:hub.24324.com 332 seivNbtC #last:=BGX5tCM19HMuPlQRIfr7ZDvrWvjsrx3QcTGwmkNACosl1T70+6BL
/FKE11LzB/AkO7BSNYdlycZi/zOu/AWHES £JNT02YoaGogFZbH03097%/0Vp4dbDrWwR3gJyIug2Eee3JVQHBN/ £WG

6AN1rYrOmZbtKuh

Apparently, this IRC channel uses some obfuscation tech-
niques to evade signature based approaches aimed at detect-
ing IRC commands used by different bots [11].

The malware then launched a network scan for open TCP
ports 135, on an address range generated from / P 1. The mal-
ware has no way to obtain this information by its own, there-
fore this information has been communicated in the encoded
message. Our mechanism successfully redirected two

@ Springer

5.2 Observation of attacker activities

The second experimentation consists of deploying a high-
interaction honeypot implementing the redirection mecha-
nism on the Internet. The objective of this experiment is to

9 See ...Jast:-<exploited_flaw>- <nb_of_success>.
10 @IP_B,@IP_C were not in the range generated from / P 1.

Internet attacks monitoring with dynamic connection redirection mechanisms 135

Internet

honeypot

connection
-------- simulated connection

Fig. 5 Platform for observation of attackers activities

collect data on real attacks. Such data will enrich our knowl-
edge on the attackers behavior and malicious activities on
the Internet. Moreover, the thorough analysis of the results
obtained from this experimentation and the comparison with
the results from [4] should serve as a useful gauge of our
mechanism and identify its potential weaknesses.

As presented in Fig. 5, the experimental platform consists
of four virtual machines running on top of one real machine.
QEMU [12] is used in order to run the virtual machines. The
kernel of the real machine has been modified to include our
redirection mechanism, as described in Sect. 3.

More precisely, two out of four virtual machines, M1 and
M2, are directly accessible from the Internet thanks to a SSH
connection. The two other machines R1 and R2 are not acces-
sible from the Internet. We modified the kernel of each vir-
tual machine (Linux) as described in [4] in order to observe
and collect all the commands executed by any attacker who
attempted to connect to the machine.

Accounts with weak passwords have been created on
machines M1 and M2. Attackers can then break into these
machines provided that they find the right login and password
information. We have also configured our dynamic redirec-
tion mechanism to automatically redirect some of the SSH
scans from machines M1 and M2 to machines R1 and R2. As a
consequence, if an attacker for example breaks into machine
M1 and initiates some SSH scans from that machine against a
particular set of IP addresses, the attacker will believe some
of these scans to have been executed against real targets,
when in reality, they will be redirected towards R1 or R2.

The platform has been operational for one month and a
half. The results we obtained are, for the moment, partial.
We nevertheless checked that the dynamic redirection mech-
anism is fully operational. So far, we did observe attackers
breaking into machine M1 or M2 and initiating SSH scans
against sets of remote IP addresses. While in [4] we did not
enable this kind of scans, the implementation of our redirec-
tion mechanism has enabled us to include such scans and to
make the attackers believe that their scans were successful.

Thus, the implementation of the redirection mechanism is
fully operational. This is illustrated for example in the fol-
lowing captures:

james@M1:~/rep_hacker$./unix 66..

[+]1[+][+] [+] [+] UnixCoD Atack Scanner [+][+][+][+][+]
[+] SSH Brute force scanner : user & password [+]
[+] Undernet Channel : #UnixCoD [+]
[+1[+1 [+]1 [+]1[+]1 [+] [+] ver 0x10 [+][+]1[+]1[+]1[+]1[+][+]
[+] Scanam: 66.221.4.* (total: 2) (1.6% done)

66.221.8.* (total: 2) (3.1% done)

66.221.12.* (total: 2) (4.3% done)
66.221.16.* (total: 2) (5.9% done)
66.221.19.* (total: 2) (7.5% done)
66.221.23.*% (total: 2) (9.0% done)
66.221.27.* (total: 2) (10.2% done)
66.221.30.* (total: 2) (11.8% done)
66.221.34.* (total: 2) (13.3% done)
66.221.38.* (total: 2) (14.5% done)
66.221.41.* (total: 2) (16.1% done)
66.221.45.* (total: 2) (17.6% done)
66.221.49.* (total: 2) (18.8% done)
66.221.52.*% (total: 2) (20.4% done)
66.221.56.* (total: 2) (22.0% done)
66.221.60.* (total: 2) (23.1% done)

The display of total: 2, meaning that two scans were

successful, shows that the redirection mechanism is oper-
ational. As a matter of fact, the redirection mechanism was
configured in order to automatically redirect two IP addresses
towards the two machines R1 and R2. This kind of SSH scans
and the associated dynamic redirections were observed sev-
eral times on the platform since the beginning of the experi-
mentation.

On the other hand, and that is why our results are still par-
tial, we did not observe for the moment any attacker trying to
connect from M1 or M2 to the IP addresses that were success-
fully scanned. In the above example, the two IP addresses of
the 66 .x.y .z network were not used by the attacker after
the successful scan.

We may try to explain this behavior in several ways. The
attacker may judge the number of successfully scanned IP
addresses insufficiently high to justify an attack on this net-
work. It is also possible that the attacker we observed is only
responsible for scanning IP addresses but not for directly
attacking them once successfully scanned. In that case, we
can imagine that he simply stores the list of the compromised
IP addresses and that they will be attacked later, from our M1
and M2 machines or from other sites. It is difficult to answer
these questions at this stage due to the short period of time
since the platform has been deployed. The continuation of
our experiments and the collection of more data will enable
us to have better insights about these issues.

6 Conclusion

The efficiency of attack monitoring and observation mech-
anisms implemented in the honeypots is directly related to

@ Springer

136

E. Alata et al.

the level of interaction and the possibilities offered by the
honeypots to the attackers. Traditional honeypot implemen-
tations generally restrict or forbid outgoing connections to
the Internet for legal liability reasons to prevent the honey-
pots from being used as a stepping stone to attack third party
machines. The dynamic connection redirection mechanism
presented in this paper is aimed at providing enhanced pos-
sibilities for observing attack scenarios and their progress on
the Internet across different machines.

The proposed mechanism has been implemented on a
GNU/Linux environment. Nevertheless, it can be easily
ported to other environments. Two experimental studies have
been set up to validate the feasibility of the proposed approach
and analyze its benefits and weaknesses. The partial results
obtained so far show that the proposed mechanism offers
enhanced possibilities for observing attacks. However, the
current design of the proposed mechanism needs to be
improved, e.g., to make it more transparent and difficult to
detect by skilled attackers. Further analysis of the data col-
lected from the high-interaction honeypot (including the redi-
rection mechanism currently deployed on the Internet) will
prove useful in assessing and extending the proposed mech-
anism.

Acknowledgments This research has been partially supported by the
French ACI project CADHO, and by the European Commission
(Projects ReSIST IST 026764 and CRUTIAL IST 027513).

References

1. Provos, N.: Honeyd—a virtualhoneypot daemon. In: 10th DFN-
CERT Workshop, Hamburg, Germany (2003)

@ Springer

10.

11.

12.

Leita, C., Dacier, M., Massicotte, F.: Automatic handling of pro-
tocol dependencies and reaction to 0-day attacks with ScriptGen
based honeypots. In: RAID 2006, 9th International Symposium on
Recent Advances in Intrusion Detection, 20-22 September 2006,
Hamburg, Germany. Also published as Lecture Notes in Computer
Science, vol. 4219/2006 (2006)

Bailey, M., Cooke, E., Watson, D., Jahanian, F., Provos, N.: A
hybrid honeypot architecture for scalable network monitoring.
Technical Report CSE-TR-499-04, University of Michigan (2004)
Alata, E., Nicomette, V., Kaaniche, M., Dacier, M., Herrb, M.:
Lessons learned from the deployment of a high-interaction hon-
eypot. In: EDCC’06, 6th European Dependable Computing Con-
ference, 18-20 October 2006, Coimbra, Portugal (2006)

Nieh, J., Leonard O.C.: Examining VMware. j-DDJ 25(8):70,
72-74, 76 (2000)

Jiang, D.X.X.: Collapsar: a vm-based architecture for network
attack detention center. In: 13th USENIX Security Symposium,
San Diego, CA (2004)

Duncombe, D., Mohay, G., Clark, A.: Synapse: auto-correlation
and dynamic attack redirection in an immunologically-inspired
ids. In: ACSW Frontiers ’06: Proceedings of the 2006 Australasian
Workshops on Grid Computing and e-research, pp. 135-144,
Darlinghurst, Australia. Australian Computer Society, Inc. (2006)
Napier, D.: IPTables/NetFilter—Linux’s next-generation stateful
packet filter. j-SYS-ADMIN 10(12):8, 10, 12, 14, 16 (2001)
Freiling, F., Holz, T., Wicherski, G.: Botnet tracking: exploring a
root-cause methodology to prevent distributed denial-of-service
attacks. Technical Report AIB-2005-07, RWTH Aachen (2005)
Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted
approach to understanding the botnet phenomenon. In: Proceed-
ings of Internet Measurement Conference 2006 (IMC’06) (2006)
Kristoff, J.: Botnets. In: 32nd Meeting of the North American
Network Operators Group (2004)

Bellard, F.: Qemu, a fast and portable dynamic translator,
pp- 41-46

	Internet attacks monitoring with dynamic connection redirection mechanisms
	Abstract
	Introduction
	Principles
	Implementation
	The redirection module
	The dialog_tracker
	The dialog_handler
	Performance evaluation
	Experiments
	Malware execution observation
	Observation of attacker activities
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

