
VIRUS BULLETIN www.virusbtn.com

66666 NOVEMBER 2004NOVEMBER 2004NOVEMBER 2004NOVEMBER 2004NOVEMBER 2004

VIRUS ANALYSIS
LET THEM EALET THEM EALET THEM EALET THEM EALET THEM EAT BRIOCHET BRIOCHET BRIOCHET BRIOCHET BRIOCHE
Peter Ferrie
Symantec Security Response, USA

In 2003 I wrote: ‘A virus using the manual reconstruction
technique seems unlikely, since the underlying structures
in .NET are extremely complex and contain many
interdependencies’ (see VB, April 2003, p.5). However,
in 2004 we received one that did it: MSIL/Impanate.

Written by the virus writer known as ‘roy g biv’, a specialist
in proof-of-concept viruses (most recently, the first 64-bit
viruses on the Win64 platform: W64/Rugrat on IA64, [see
VB, June 2004, p.4] and W64/Shruggle on AMD64),
Impanate is the first known parasitic, entry point obscuring
appender for the .NET platform.

SIGN OF THE TIMESSIGN OF THE TIMESSIGN OF THE TIMESSIGN OF THE TIMESSIGN OF THE TIMES

Impanate searches in the current directory for files which do
not contain a zero in the Second field of the LastWriteTime
field. Impanate sets the Second field to zero in every file it
examines, which serves both as an infection marker and as a
means to avoid re-examining uninfectable files.

The use of the timestamp field is a speed optimization
method, since it can be queried without incurring the
performance penalty of opening the file. In addition, the
LastWriteTime field is the only time field that is never
changed when a file is copied to another location.

FILFILFILFILFILTRATRATRATRATRATION DEVICETION DEVICETION DEVICETION DEVICETION DEVICE

As with all viruses produced by this virus writer, files are
infected only if they pass a strict set of filters. The
conditions include that the file must be a character-mode or
GUI application for the .NET framework, that the file is not
a DLL, that the file contains no digital certificates, and that
it has no bytes outside the image.

The virus avoids files that contain StrongNameSignatures or
VTableFixups. StrongNameSignatures are used for digital
signing of .NET files, so it is clear why the virus avoids files
which contain them. However, it is not clear why the virus
avoids VTableFixups.

The virus avoids files whose last section is writable, because
the virus wants to place its code in the last section of the
host, but the .NET framework will not allow code to execute
from within a writable section.

In addition, the virus supports both 32-bit and 64-bit files,
and will infect them both correctly, using a tiny piece of
code trickery.

VIRUS BULLETIN www.virusbtn.com

77777NOVEMBER 2004NOVEMBER 2004NOVEMBER 2004NOVEMBER 2004NOVEMBER 2004

SLIPSTREAMSLIPSTREAMSLIPSTREAMSLIPSTREAMSLIPSTREAM

The virus parses the Metadata root header manually,
searching for the streams that it requires. The streams are
named ‘#~’, ‘#Strings’ and ‘#Blob’. The streams may
appear in any order – most tools produce a constant order
– but the virus will reorder them when it infects a file.

The virus is also aware of several undocumented
characteristics of the .NET file format, including the extra
data fields that can appear in the header and the flags that
control the size of the stream references.

The ‘#~’ stream contains information that is of interest to
the virus. Specifically, the virus requires that the host
contains 16-bit references to the ‘#Blob’, ‘#GUID’ and
‘#Strings’ streams, which make the ‘#~’ stream easier to
parse, and that the host contains the following elements:
TypeRefs, MemberRefs, StandAloneSigs, AssemblyRefs,
Assemblies and Methods.

The virus parses the stream manually to find the TypeRefs,
MemberRefs, StandAloneSigs, AssemblyRefs and Methods.
The virus is not interested in the Assemblies as such, but
simply requires that some are present.

SOME ASSEMBLSOME ASSEMBLSOME ASSEMBLSOME ASSEMBLSOME ASSEMBLY REQUIREDY REQUIREDY REQUIREDY REQUIREDY REQUIRED

The TypeRefs contain pointers into the ‘#Blob’ stream of
the descriptions (the types of parameters to be passed, if
any, and the type of the return value, if any) of the library
functions used by the host. The virus appends its own
TypeRefs to those of the host and updates the references in
the ‘#Blob’ stream.

The MemberRefs contain pointers into the ‘#Strings’ stream
of the names of the library functions and properties used
by the host. The virus appends its own MemberRefs to
those of the host and appends the MemberRef names to the
‘#Strings’ stream.

The StandAloneSigs contain the number and type of
variables in each Method. The virus chooses randomly from
the StandAloneSigs of the host, duplicates one of them and
appends the StandAloneSigs of the virus to it.

The AssemblyRefs contain pointers into the ‘#Strings’
stream of the names of external assemblies that contain the
functions used by the host. The virus requires two particular
assemblies to be referenced in order to replicate.

The first assembly the virus requires is ‘mscorlib’, which
is the assembly that contains many core functions, and
which is roughly equivalent to ‘kernel32’ for Windows
applications.

The second assembly the virus requires is ‘System’, which
the virus uses to access the process memory, in order to

copy the virus code to a local buffer, for modification prior
to placing it in the host.

The virus does not alter the AssemblyRefs collection,
perhaps because it would mean updating each method of
the host, resulting in many changes to the file.

METHOD ACTORMETHOD ACTORMETHOD ACTORMETHOD ACTORMETHOD ACTOR

The Methods contain the host code. The virus finds the first
method that uses the StandAloneSigs that the virus chose
earlier, and which supports the use of local variables. The
virus also requires that the method contains no exception
handling information. The most likely reason for this is that
the process of updating the exception handling information
is extremely complicated.

Having found a suitable method, the virus duplicates it,
then appends the virus code to it. After the host method
has run it would normally return to the caller; now, the
virus will begin to execute at that time, before returning to
the caller.

After appending the virus code, the virus parses it manually
to update the references to the local variables and functions.
The virus contains code to calculate the length of each
instruction in the MSIL instruction set, and it knows which
instructions need to be processed specially.

After updating the code, the virus updates the size of the last
section and the host image size, and recalculates the file
checksum, if required.

EXPECT THE UNEXPECTEDEXPECT THE UNEXPECTEDEXPECT THE UNEXPECTEDEXPECT THE UNEXPECTEDEXPECT THE UNEXPECTED

And so it comes to pass that, in the hands of a skilled
programmer, the unlikely can became the ordinary. At
least I didn’t say that it could not be done because it was
too difficult – anything is possible for those who have
enough patience.

MSIL/ImpanateMSIL/ImpanateMSIL/ImpanateMSIL/ImpanateMSIL/Impanate

Size: 7539 bytes.

Type: Direct action, parasitic, entry point
obscuring appender.

Infects: Microsoft .NET files.

Payload: None.

Removal: Delete infected files and restore
them from backup.

