J Comput Virol (2010) 6:43-55
DOI 10.1007/s11416-008-0104-2

ORIGINAL PAPER

New data mining technique to enhance IDS alarms quality

Safaa O. Al-Mamory - Hongli Zhang

Received: 6 April 2008 / Revised: 16 August 2008 / Accepted: 20 August 2008 / Published online: 10 September 2008

© Springer-Verlag France 2008

Abstract The intrusion detection systems (IDSs) generate
large number of alarms most of which are false positives.
Fortunately, there are reasons for triggering alarms where
most of these reasons are not attacks. In this paper, a new
data mining technique has been developed to group alarms
and to produce clusters. Hereafter, each cluster abstracted as
a generalized alarm. The generalized alarms related to root
causes are converted to filters to reduce future alarms load.
The proposed algorithm makes use of nearest neighboring
and generalization concepts to cluster alarms. As a cluster-
ing algorithm, the proposed algorithm uses a new measure
to compute distances between alarms features values. This
measure depends on background knowledge of the monitored
network, making it robust and meaningful. The new data
mining technique was verified with many datasets, and the
averaged reduction ratio was about 82% of the total alarms.
Application of the new technique to alarms log greatly helps
the security analyst in identifying the root causes; and then
reduces the alarm load in the future.

1 Introduction

The frequency of computer intrusions has increased rapidly
in the past several years. Intrusion detection systems (IDSs)
are an essential component of a complete defense-in-depth
architecture for computer network security. They collect and
inspect packets, looking for evidence of intrusive behav-
iors. As soon as an intrusive event is detected, an alarm is

S. O. Al-Mamory (X)) - H. Zhang

School of Computer Science and Technology,

Harbin Institute of Technology, 150001 Harbin, China
e-mail: safaa_vb@yahoo.com

H. Zhang
e-mail: zhl@pact518.hit.edu.cn

raised giving the security analyst an opportunity to react
promptly. Unfortunately, they provide unmanageable amount
of alarms. Inspecting thousands of alarms per day [1] is
unfeasible, especially if 99% of them are false positives [2].

Clustering is used by many researchers to mitigate the
flood of alarms especially when alarm processing deals with
huge number of alarms [3-5]. Julisch [2,6] propounded an
interesting method using data mining. They introduced alarm
clustering as a method to support root cause discovery. The
root cause of an alarm was defined as the “reason for which it
occurs.” He argued that root causes are primarily responsible
for the large number of redundant alarms and most of these
root causes are generated because of configuration problems
and thus can be fixed by manual interception. His work out-
lines semi-automatic approach for reducing false positives
in alarms by identifying the root causes automatically and
then writing rules to filter them. Such rules can drastically
reduce future alarms load. However, this method overlooked
the following shortcomings: First, a weak measure was used
to compute distances between the alarms. Second, to solve an
overgeneralization problem, Julisch’s algorithm passes over
a table of alarms many times [6]. Finally, the stop condition
is complex which depends on an input threshold.

The primary focus of this paper is on addressing these
shortcomings. We developed the new approximation algo-
rithm to cluster the alarms; these clusters are abstracted as
generalized alarms. These generalized alarms, which are
related to root causes, are used to filter the alarms. The pro-
posed algorithm generates a generalized alarm for every clus-
ter. By representing each cluster by a cluster’s center, the
distance between every new alarm and all clusters centers
will be computed. Then, the alarm is assigned to the near-
est cluster. A new cluster is created if the distance is more
than a threshold. Finally, we separately generalize every clus-
ter’s alarms. The contribution of this paper is developing new

@ Springer

44

S. O. Al-Mamory, H. Zhang

data mining method which has new features generalization
technique to avoid overgeneralization, and has good distance
measure between features values. Application of this method
to alarms log greatly helps the analyst in identifying the root
causes; and then reduces the alarm load in the future.

This paper is organized as follows. Section 2 reviews
related works. Section 3 shows the proposed system frame-
work and the requirements. Section 4 presents the proposed
alarms clustering algorithm. Section 5 presents the empir-
ical results. The discussion is presented in Sects. 6 and 7
concludes this paper and suggests future work.

2 Related works

In the last decade, researchers have designed many systems
that deal with the problem of overwhelming the security ana-
lyst with alarms. A survey on the work of alarms processing
techniques is given in [7].

Several techniques have been introduced recently to
correlate IDS alarms. The first class of approaches uses
clustering to build attack scenarii. Siraj et al. [5] proposed
a clustering technique to reconstruct attack scenarii. Proba-
bilistic alert correlation finds similarity between alerts that
match closely, if not exactly [8]. According to Valdes et al.,
probabilistic alert correlation correlates attacks over time,
over multiple attempts, and from multiple sensors. Alert
correlation tasks consist of [8]: identifying alert threads,
identifying incidents by clustering/correlating threaded alerts
with meta-alerts (i.e., scenarii), and clustering/correlating
meta-alerts with meta-alerts. Dain et al. [9] used an alert
clustering scheme which fuses the alerts into scenarii using
an algorithm that is probabilistic in nature. In this system,
scenarii are developed as they occur, i.e., whenever a new
alert is received it is compared with current existing scenarii
and then assigned to the scenario that yields highest proba-
bility score. Our method differs from these methods in that
it is not used for building attack scenarii.

Another class of methods uses clustering to reduce the
volume of alarms presented to the security analyst. Perdisci
et al. [4] used clustering to introduce a concise view about
attacks and to reduce the volume of alarms. Julisch [2,6] pro-
posed a new method in which alarm clustering is performed
by grouping together alarms whose root causes are generally
similar. A generalized alarm for a specific alarm cluster repre-
sents a pattern that all of the alerts in the cluster must match in
order to belong to that cluster. Our method can be considered
as a variation of Julisch’s work; however, we have designed
a new data mining technique, which is different from these
clustering methods, to reduce alarms volume.

The third class of methods is the work of Ning et al.
[10] and the like. This method generates correlation graphs
depending on prerequisites/consequences knowledge of

@ Springer

individual alerts. They proposed a correlation model based
on the inherent observation that most intrusions consist of
many stages, with the early stages preparing for the later
ones. The correlation model is built upon two aspects of
intrusions that are, prerequisites/consequences knowledge.
With knowledge of prerequisites/consequences, their model
can correlate related alerts by finding causal relationships
between them. They used hyper alert correlation graphs to
represent the alerts, where the nodes represent hyper alerts
and the edges represent prepare for relation.

The Morin et al. model (M2D2) [11] has provided con-
cepts and relations relevant to the information system secu-
rity. It relies on a formal description of sensor capabilities
in terms of scope and positioning, to determine if an alert
is false positive. This model can be used to facilitate event
aggregation and correlation.

The adaptive learner for alert classification (ALAC) [12]
is an adaptive alert classifier based on the feedback of an
intrusion detection analyst and machine-learning technique.
The classification of IDS alerts is a difficult machine-learning
problem. ALAC was designed to operate in two modes: arec-
ommender mode, in which all alerts are labelled and passed
to the analyst, and an agent mode, in which some alerts are
processed automatically.

3 Preliminaries

This section states some basic concepts that is used in the
system. Section 3.1 presents some data mining principals and
the requirements which should be satisfied by the proposed
method. Section 3.2 describes the structure of our system.

3.1 Data mining technique requirements

Data mining is the analysis of (often large) observational
datasets to find unsuspected relationships and to summarize
the data in novel ways that are both understandable and useful
to the data owner. The relationships and summaries derived
through a data mining exercise are often referred to as models
or patterns. Examples include linear equations, rules, clus-
ters, graphs, tree structures, and recurrent patterns in time
series [13].

It is convenient to categorize data mining into types of
tasks, corresponding to different objectives for the person
who is analyzing the data. These tasks are as follows: First,
exploratory data analysis, the goal here is simply to explore
the data without any clear ideas of what we are looking for.
Second, descriptive modelling which tries to describe all of
the data (or the process generating the data). Third, predic-
tive modelling (classification and regression) task aims to
build a model that will permit the value of one variable to be
predicted from the known values of other variables. Fourth,

New data mining technique to enhance IDS alarms quality

45

discovering patterns and rules task look for patterns and rules
embedded in the data. Finally, retrieval by content task in
which the user has a pattern of interest and wishes to find
similar patterns in the dataset [13]. Our method belongs to
the fourth class mentioned above.

For the data mining technique to be effective, there are
some requirements that should be satisfied. We present these
requirements, as supposed in [6], which should be fulfilled
by the proposed technique:

e Scalability Scalability of pattern and rule discovery algo-
rithms is obviously an important issue [13]. Because of
the fact that more than a million alarms are triggered
by IDSs per month [6], so the data mining algorithms
should be scale predictably (e.g., linearly) as the num-
ber of alarms and/or the number of variables grow. For
example, naive implementation of a decision tree algo-
rithm will exhibit a dramatic slowdown in run-time per-
formance once records become large enough that the
algorithm needs to frequently access data on disk [13].

e Noise tolerance Huge software packages are distributed
electronically, but the very success of the Internet makes
some bugs invisible. These invisible bugs make the intru-
sion detection alarms very noisy [14]. In addition, to
evade the detection by the IDS, the attacker flood a net-
work with noise traffic to attack the victim with little or
no intervention from the IDS.

e Multiple feature types Intrusion detection alarms can con-
tain numerical features (e.g., count and flags parameters),
categorical features (e.g., IP addresses and port numbers),
time features, etc [6]. The efficient data mining techniques
should support all of these feature types.

e FEase of use The easier the technique is the more suit-
able one because the security analyst is not a data min-
ing expert. The data mining approach should require few
knowledge from the security analyst and should have
parameters that is easy to set.

e [Interpretability The generated patterns should be highly
interpretable to be useful; otherwise they will be useless.
For example, one of the factors that made the naive Bayes
model popular in the machine learning literature is the
interpretability [13].

3.2 Framework overview

As defined by Julisch [6], a root cause (e.g., a worm) affects
one or more components (e.g., the hosts in a subnet), which
in turn causes these components to trigger alarms (when the
worm spreads by attacking other machines). Similarly, a non-
standard protocol can affect a server and cause it to trigger
“Suspicious protocol” alarms. Root cause analysis is con-
cerned with identifying the type and locations of root causes

causes to make IDS
Broken — generate Fragmented/ triggers \”Fragmented 1p"

TCP/IP Stack Traffic Alarms

L Root cause -
[

Root cause analysis

Fig. 1 An example states what are the root cause and root cause
analysis

alarms

S~ ‘
f N O
\ Internet J g ’]

Filtering
Rules

filtered
alarms

Alarm’s
repository

- i 2 o
N T [H] T
— N = 2
O 0 m = Z
| network i ,generalized The Proposed
information g alarms Svystem

Security Analyst

Interpret generalized alarms/
writing filtering rules

Fig. 2 The framework of the proposed system

[6]. Figure 1 states these two concepts with an example taken
from [6].

The suggested data mining technique do extract alarm pat-
terns. Our method makes use of the alarms history to refine
the future alarms quality. The root cause (or the configura-
tion problem) instigates the IDS to trigger alarms that almost
always have similar features. These similar alarms can be
clustered together; the proposed algorithm can extract a pat-
tern from each cluster. The extracted patterns help the secu-
rity analyst in specifying the root causes behind these false
alarms and writing accurate filtering rules.

The framework of the proposed system can be seen in
Fig. 2. Our approach focuses on identifying the root causes
for large groups of alarms, which typically correspond to
problems in the computing infrastructure leading to gener-
ate many false positives. It does not look for small, stealthy
attacks in the alarm logs, but aims to reduce the false alarms
to make it easier to identify real attacks in the subsequent
analysis.

4 The proposed algorithm

This section describes the proposed algorithm in details.
Section 4.1 shows the generalization hierarchies as a back-
ground knowledge. Section 4.2 proposes the distance mea-
sure which has been suggested to compute the distance
between alarms. Section 4.3 presents our algorithm and
Sect. 4.4 focuses on finding a heuristic to setting the con-
trol parameter.

@ Springer

46

S. O. Al-Mamory, H. Zhang

Fig. 3 Network structure and
sample generalization
hierarchies for IP address, port,
and time features

Firewall
Network structure

(C) Any_IP

/\

PN

Firewall ip3 HTTP/FTP
A m
ipl ip2 ipd ip5

IP taxonomy

4.1 Generalization hierarchies

The availability of certain background knowledge, such as
conceptual hierarchies (hierarchies for short), can improve
the efficiency of a discovery process and also expresses user’s
preference for guided generalization, which may lead to an
efficient and desirable generalization process [15]. A hierar-
chy defines a sequence of mappings from a set of concepts
to their higher-level correspondences [16].

Hierarchies represent necessary background knowledge
which directs the generalization process [15]. Knowledge
about hierarchies can be directly provided by domain experts.
Hierarchy information may also be implicitly stored in the
database. Alternatively, a hierarchy can be constructed auto-
matically based on clustering and database statistics [16]. Our
algorithm assumes that meaningful hierarchies have been
defined for all alarm’s features (features for short). Some
hierarchies can be seen in Fig. 3 [2].

We have adopted edge numbering (as can be seen in
Fig. 3b—d) because we want the cost of clustering the diver-
gent features values to be higher than the convergent features
values. The edges weights values in the trees of Fig. 3 are
chosen consecutively with a condition, which is when we go
up in the tree then the values will increase. In other words, let
D be a depth of the tree and L(Node) is the level of a Node in
the tree. We will then number the edges of the trees depend-
ing on D-L(Node) relation. We adopted the linear increasing
of edges weights because we experimentally got good results

@ Springer

(b)
Any_Day_of_Week
/\
Week_End Work_Day
A /\
SAT SUN MON eee FRI
1 1 1

Time taxonomy

(d) Any_Port
/\
Non_Priv
Internet Priv A~
. see e 1023 1024 65535

ip7 oen

Port taxonomy

with it; however, the logarithmic increasing of weights may
also be promising.

4.2 Distance measures

The IDS triggers alarms to report presumed security viola-
tions. Let A be an alarm having many features { f1, f2 ,. . ., fu }
such that space of any feature is Dom(f;) (i.e., possible val-
ues). Then, the i’th feature of alarm A is denoted as A[f;].
In this paper, the considered alarm’s features are source IP,
destination IP, source port, destination port, time stamp and
alarm type. It should be noted that we used IP address refer-
ring to both source IP and Destination IP features. We make
the same assumption for port features.

For a given feature f;, a set of values can be grouped as a
generalized concept. For example, the subset of IP addresses,
ip1 and ipj, can be generalized to FIREWALL as shown in
Fig. 3c. Same thing is assumed with port feature, where val-
ues 20, 21, 80 are generalized to PRIV as can be seen in
Fig. 3d. General(f;) is the set of generalized values of f;.
As aresult, a BigDom(f;) is Dom(f;) U General(f;) where
Dom(f;) N General(f;) = &. The values of any feature f;
of the generalized alarm (g) belong to BigDom(f;). The
BigDom(f;) can be represented by a tree (t;) which is a hier-
archy as shown in Fig. 3b—d. All hierarchies are represented
by trees; they can also be represented by a directed acyclic
graphs. The generalized alarms represent the final result of

New data mining technique to enhance IDS alarms quality

47

our algorithm. Let G be the table of g and T be the table of
alarms.

Definition 1 For any given two elements & and 8 € 1;, «
is an ancestor of 8 if a path from the root of 7; to 8 goes
through «; it is denoted as « — B. Anode u € 7; is a
common ancestor of o and g if it is an ancestor of both « and
B. Furthermore, the node p is called the nearest common
ancestor of nodes « and 8, NCA(«, B), if n is a common
ancestor of o and B and is the nearest to « and 8 among their
common ancestors. Any node in 7; is an ancestor of itself.

To illustrate the concepts in definition 1, as shown in
Fig. 3c, the NCA(ip1,ip3) is DMZ and the NCA(ip5,DMZ)
is DMZ. In addition, NCA(ips, i pe) is i pe because any node
is the ancestor of itself.

Julisch [2] has used a measure to compute the distance
between alarms feature values; we will denote this measure
by M 4. Using M 4, the distance between « and g is the length
of the shortest path in t; that connects @ and f; all edge
weights in Fig. 3 are assumed to be ones.

In this paper, we will use different measure to compute
the distances between features values, named as Mp. The
distance using Mp, dist(«, B), is the weighted sum of the
shortest path in 7; (using the sum of edges weights in 7;)
which connects @ and S. The edges weights, when using
Mp, are assumed to be as in Fig. 3. As a result, the distance
is computed using Eq. (1). Here, these two measures will
be used in order to compare Julisch’s measure, M 4, with our
measure, M g. The using of measure M p is the first difference
with Julisch’s work.

dist(c, B) if a—>p

dist(c, p) + dist(B, p) otherwise (M

dist(a, B) = {

where p is the NCA(«, B). To illustrate distance comput-
ing, using M 4, the dist(ip1,ip3) = 3, dist(ips,DMZ) = 2 and
dist(ips,ips) = 0. When using Mp, the dist(ipy,ip3) = 5,
dist(ips,DMZ) = 3 and dist(i pe,ips) = 0.

The weights of the edges will be consecutive. We mean
by these weights, the higher the value of L(NCA(.,.)) is, the
lesser the distance. This will make the generalization to be
more accurate. For demonstration, see Fig. 3c, ips is nearer
to ipy than Internet. In other words, dist(ips,ip;) < dist
(ips.Internet). The measure Mp distinguishes between
dist(ips, ip1) = 6 and dist(ips, Internet) = 9, while My
measure does not distinguish this, e.g., dist(ips,ip;) =
dist(ips, Internet) = 4. As a consequence, Mp is more
meaningful than My4.

After mentioning the distance between features values,
let Dist(x,y) be the distance between alarm x and alarm y,
where x and y € T. So, Dist(x, y) is > distx[fi], ¥[fi])
Vi:l<i<n

4.3 Generalized alarms generation

The alarm clustering problem is NP-Complete as proved by
Julisch [17]. The first work that used root causes to filter IDS
alarms is Julisch’s work, so we have compared our algorithm
with his algorithm. In addition, we believe that there is a
room for enhancement in his work. We have developed an
approximation algorithm to find a set of clusters; each cluster
has maximum similarity among its alarms. The proposed
algorithm is different from Julisch’s work in four trends. First,
we used a different distance measure between features values
as we have seen in Sect. 4.2. Second, it uses a different stop
condition. Third, any generalization does not happen unless
there is need. And finally, it has a NeighbOring_thresholD
(NOD for short) control parameter that controls the distances
between cluster’s alarms.

The main idea of the proposed algorithm is to find clusters
whose distances among their alarms are less than or equal to
NOD, then find out a generalized alarm for each cluster. This
process will continue until no alarms are found in 7 (i.e., the
stop condition, this is the second difference with Julisch’s
work). Hereafter, the identical generalized alarms would be
merged. More formally, our system works in the following
steps:

e The set of alarms contains several clusters {Cy, Ca, ...,
Cm } representing patterns for attacks, root causes, and
noise.

e Every cluster C;, 1 <i < m, contains alarms whose dis-
tances between them and the center of cluster C; < NOD.

e Extract the generalized alarm for every cluster C;, 1 <i <
m, by finding separately the NCA for each feature. Merge
the identical generalized alarms.

e Forward these generalized alarms to security analyst to
extract root causes and to write filters for them.

For more detail, Fig. 4 shows the Generate_Generalized_
Alarms procedure. Clusters centers are stored in G, line 1
sets this tables to empty; moreover, they are considered as the
generalized alarms. An important feature of this procedure
is that it passes over T for once which makes it very fast as
shown inline 2. Line 3 selects the nearest cluster’s center (Gy)
to the new alarm A;. If the distance, between A; and Gy, is
less than or equal to NOD (line 4), then A; would be inserted
in this cluster (line 5) and the NCA(A;, G) will be computed
between the identical features (line 6). Figure 5 shows how
the generalization process occurs. Otherwise, the new alarm
is considered as a new cluster’s center and is appended to
G (line 8). The identical generalized alarms are merged, in
line 9 to 10, into a single generalized alarm whose count
value is equal to sum of individual counts. Line 11 returns all

@ Springer

48

S. O. Al-Mamory, H. Zhang

Procedure Generate Generalized Alarms
Input: An alarm clustering problem (7, NOD, 1, ...,7,)
Output: Set of generalized alarms
Method

1: Set G to Empty ;
: for each alarm 4; € T do {
Select the nearest cluster G to 4; from G;
if Dist(4;, Gy <NOD then {

Set 4; belong to Gy ;

Keep NCA(A[f], Gdf]) Vf; as new features values for Gy;
}else

Consider 4; as a new cluster’s center and save it in G;}
9: for each identical alarms g, & € G do
10: g[count] := g[count]+ g[count] and delete & from G ;
11:Return Vg € G;

RN REDD

Fig. 4 Pseudo code of the proposed algorithm

Source Source Dest. Dest. Time Alarm
P Port P Port Stamp Type Count Cluster No.
Alarm1, _ 3
Cluster Center| ips 5000| ip1 | 80 | tsy | X | 1 K |
Alarm n | ips 6000| ip1 | 80 | ts, X | 1 | K |
Alarm m | ips 7000| ip1 | 80 | ts; X | 1 | K |
Generalized .
Alarm HTTP/FTP |Non-Priv| lp1| 80 |SAT| X | 3 | K ‘

Fig. 5 An example of the generalization process

generalized alarms in G, where the count refers to the size of
the cluster.

Preposition 1 The time complexity of the proposed algo-
rithm is O(nxk), where n is the number of the alarms and k
is the number of clusters in these alarms.

Proof To find the class of a given alarm, it should be checked
against the existing clusters, then assign it to the nearest clus-
ter if the distance between that alarm and the nearest cluster’s
center < NOD value. As shown in Fig. 4, the time for process-
ing each new alarm with the proposed algorithm is linear in &
which is the number of detected clusters; this appears in line
3. The other steps of the algorithm, line 4 to line 8, take a con-
stant time. Steps 9 and 10 merge duplicated clusters taking a
quadratic time with respect to k; this time can be ignored if
compared to the number of alarms, 7, because k < n holds.
Hence, the performance of the proposed algorithm depends
on the number of received alarms and the number of clusters
in them. In other words, the time complexity of the proposed
algorithm is O(nxk) which appears to be attractive.

The NOD parameter has a big influence on the time com-
plexity of the algorithm. On one hand, the too big NOD value
enforces the algorithm to produce few clusters, which accel-
erates the execution time. On the another hand, the too small

@ Springer

value for NOD parameter causes the algorithm to produce
many clusters, which slows down the running time. In other
words, the zero value for NOD parameter makes the time
complexity of the algorithm to be O(n?) because every alarm
will be an individual cluster, but this is not an interesting case.

O

The proposed algorithm tries to scan 7 to find the nearest
neighbors of a given alarm (using the NOD parameter) and
then generalizes them. It produces generalized alarms, most
of which are root causes. However, if the features of the
resulting generalized alarms are excessively abstracted, then
the analyst can not identify the root causes of false alarms. As
aresult, the proposed algorithm minimizes the generalization
steps trying to mitigate the influence of generalization by
taking the NCA as shown in Fig. 5.

Our algorithm is a variation of attribute-oriented induction
(AOI) algorithm. AOI algorithm is a set-oriented database
mining method which generalizes the task-relevant subset of
data attribute-by-attribute, compresses it into a generalized
relation, and extracts from it the general features of data [15].
Our algorithm makes use of the generalization concept of
AOQI algorithm and the neighboring concept.

The generalization used by our method is different from
the one used in AOI algorithm [15]. AOI algorithm general-
izes one concept to its parent in the hierarchy whereas our
generalization is done by finding the NCA of two concepts
in a hierarchy. Furthermore, AOI algorithm generalizes all
values of a given feature in each pass over the alarms table
while our algorithm generalizes different features in each
alarm depending on the NOD value. Our new generalization
technique is the third difference with Julisch’s work.

In this paper, the generalization is performed by finding
NCAC(.,.) for identical features of any two alarms in the same
cluster. This occurs when we compute the distance between
the new alarm and all clusters centers. If the minimum dis-
tance < NOD holds, then NCA(.,.) between identical features
of the new alarm and the generalized alarm of the match-
ing cluster will be computed. Put another way, assume that
we want to find the generalized alarm for a given cluster.
Then, for all alarms which belong to a cluster, the NCA(.,.)
will be computed for each pair of identical features, e.g.,
glsrcIP1=NCA(A[srcIP],NCA(A>[srcIP],NCA(...)). The
resulting generalized alarm will be stored in table G, which
contains the generalized alarms.

4.4 NOD setting

Most of the clustering algorithms have control parameters
[18]. The proposed algorithm also has a control parameter,
which is NOD. It should be adjusted carefully by the analyst.
If the selected NOD value is too big, then the real root causes
will be lost due to overgeneralization; the real root causes will

New data mining technique to enhance IDS alarms quality

49

spread over many clusters if the selected NOD value is small.
The number of resulting clusters is inversely proportion to
the NOD value. The using of NOD parameter is the fourth
difference with Julisch’s work. In this section, we will present
a heuristic to find the best value for the NOD parameter.
The best value for the NOD parameter can be determined
depending on validation of the clustering results. We can
run the clustering algorithm repetitively with different NOD
parameter values and compare the results against a well-
defined validity index. The validity index is a formula that
measures goodness in a quantitative manner [6]. For any
dataset, the best partitioning will maximize (or minimize)
the validity index. More formally, for a given dataset, we:

e Perform n clustering runs R ;, where i € [1, n]. Each run
is with different NOD; value.
Compute /DX ; validity index value for each R ;.
Choose the NOD; value that is associated with the maxi-
mum (or minimum) IDXR, ; value.

In the sequel, we will present the clustering validity and the
main available validity indices. In other words, the validity
indices that can be used with crisp clustering are listed. We
will state the validity index that will be used to find the best
NOD value.

Cluster validity process is to evaluate the results of a
clustering algorithm. Three approaches to investigate cluster
validity are exist [19]: external criteria, internal criteria and
relative criteria. The two first approaches are based on sta-
tistical tests and their major drawback is their high computa-
tional cost. Moreover, the indices related to these approaches
aim at measuring the degree to which a dataset confirms an a-
priori specified scheme. On the other hand, the third approach
aims at finding the best clustering scheme that a clustering
algorithm can be defined under certain assumptions and para-
meters [20]. The more suitable criteria for NOD value esti-
mation is the relative criteria. There are two criteria proposed
for clustering evaluation and selection of an optimal cluster-
ing scheme [21]: compactness and separation. Compactness
means that the members of each cluster should be as close
to each other as possible while separation means that the
clusters themselves should be widely spaced.

Several validity indices have been proposed in the litera-
ture for each of the above approaches [22-24,19,25]. There
are many validity indices for the relative criteria, among them
are: the Silhouette [26], the Dunn [27], the Davies-Bouldin
[28], and the SD [20] indices. We have selected SD index
because its time complexity is O(n) [22]. In the sequel of this
section, we will state this index.

The SD validity index is defined based on the concepts
of the average scattering for clusters and total separation
between clusters. The average scattering for clusters [22] is

defined by Eq. (2):
llo (vl
Z : @
llo (Xl
where c¢ is the number of clusters, v; is the center of cluster
i, o (v;) is the variance of cluster i, and o (X) is the variance

of a dataset. The definition of total scattering (separation)
between clusters is given by Eq. (3) [22].

D Z (Z lloe — vzn) 3)

mmk 1

Scat(c) =

Dis(c) =

where Dpax = max([lv; — v;l) Vi, j e {1, 2,3,...,c}is
the maximum distance between cluster centers. The Dpyin =
min(|lv; — v;|) V1i,j €{1, 2,...,c} is the minimum distance
between cluster centers. Now, a validity index SD can be
computed using Eq. (4) [22].

SD(c) = «a Scat(c) + Dis(c) 4)

where « is a weighting factor equal to Dis(cimax) where ciax 1S
the maximum number of clusters. The first term (Scat(c) that
is defined by Eq. (2)) indicates the average compactness of
clusters. A small value for this term indicates compact clus-
ters and as the scattering within clusters increases (i.e., they
become less compact) the value of Scat(c) also increases. The
second term Dis(c) indicates the total separation between the
¢ clusters. Contrary to the first term the second one, Dis(c),
is influenced by the geometry of the clusters centers and
increase with the number of clusters [20]. The NOD parame-
ter value that minimizes the SD index can be considered as
the best value.

5 Experiments

In this section, we describe the experiments conducted to
evaluate our system. The proposed system was tested on an
AMD Athelon processor 2.01 GHz with 512 RAM running
Windows XP. Two different datasets were used in our exper-
iments: a real dataset and DARPA 1999 dataset [29]. For
both of these datasets we ran Snort [30], an open-source
signature-based IDS. The resulting alarms have been labeled
manually by us and using attack truth tables, for real dataset
and DARPA 1999 dataset, respectively.

5.1 Results on a live network

This section presents experiments which we have performed
by clustering a log of historical alarms. One of the objec-
tives from this experiment is to see the interpretability of
resulted clusters. The work with our algorithm composed
of two stages; clustering and filtering stages. The resulting
clusters from clustering stage (i) are subsequently used as

@ Springer

50

S. O. Al-Mamory, H. Zhang

rules in the subsequent filtering stage (i + 1). The alarms
log was taken from Snort IDS [30], during a period of two
months containing 302,473 alarms; the first month was used
for generating filtering rules which have been used to clas-
sify the second month alarms. The Snort IDS sensor has been
deployed in a network which is similar to the one in Fig. 3a.
The dataset used in this experiment was collected during
the daily operation of an educational network. The IP hier-
archy was derived from the background knowledge of our
network which composed of Inside, Internet, Router, DMZ,
etc., as concepts. We used the same time and port hierarchies
in Fig. 3.

The resulting generalized alarms (from the first month)
of the six largest alarm clusters are shown in Table 1; they
summarize about 96% of all alarms. Each line of the table
represents one alarm cluster; the count column indicates clus-
ter size. The undefined value in the port columns indicates
that the IDS did not generate any value for the feature such
as the ICMP protocol which has no ports notion. For privacy
purposes, the IP addresses of our network are sanitized as
ip1, ip2, etc. referring to the machines as in Fig. 3a.

It should be noted that the generalized alarms can perfectly
suggestroot causes. Furthermore, these root causes need to be
validated thus requiring experience in network security and
environment information. We have analyzed the generalized
alarms presented in Table 1 as follows:

FULL XMAS scan.Itis possible for SnortIDS to generate a
false alarm that looks like this alarm. Here, the IDS thought
that the router was running a scan. After investigating the
router, we discovered that it was faulty which caused various
unnatural packets to be sent. The problem involved bits from
the port specification being copied into flags field, causing
bogus flags combinations to be set and this was the root cause.

(ftp_telnet) FTP traffic encrypted. Many encrypted FTP
traffic alarms were triggered, which was strange because we
were not using any FTP clients at all. Using the eMule pro-
gram, as our analysis showed, was the root cause. Because
all ports are freely configurable in eMule, some users were

setting the ports of eMule identical to FTP ports. In other
words, eMule’s connection on FTP port causes reports of
FTP attacks.

DDOS Stacheldraht agent — handler skillz. The Snort
IDS showed very large amount of Stacheldraht alarms. It
could tell that Stacheldraht is a distributed denial-of-service
tool (DDoS). Further investigations showed us that
Stacheldrahtis the DDoS tool that attacks systems with floods
of ICMP traffic. Since we were quite certain that our network
was not suffering that many DDoS attacks, we further ana-
lyzed the traffic. This showed that a system in the network
of the internet service provider was misconfigured, sending
packets that contained the text-string: “This is not an attack”.

http_inspect: BARE BYTE UNICODE ENCODING. This
alarm simply highlights the fact that many clients issue this
alarm. The root cause, after investigation, was that this alarm
came up all the time when the McAfee virus scan enterprise
clients contacted McAfee server over port 80.

ICMP Redirect Host. There was large number of ICMP
Redirect Host alarms that came from a DMZ host directed to
other DMZ hosts. A closer investigation of this generalized
alarm indicated that a host was sending messages to other
DMZ hosts about the existence of the firewall; therefore,
these alarms can be omitted.

Telnet Access. This alarm was generated after each suc-
cessful telnet connection. This event occurs when a remote
user from outside the internal network successfully connects
to a telnet server. Because authorized users are allowed, in
our policy, to connect remotely using telnet; this alarm was
considered as false positive.

Note that for the third alarm type, we found that it is
difficult to specify the actual root cause; it is still unclear
to us what made the IDS decides that there was a DDoS
attack. This, however, is no limitation of our alarm cluster-
ing method. In fact, even when we looked at raw intrusion
detection alarms, we could not ascertain the root causes. Too
much information was missing because the IDS provides too
little information about the alarms. Hence, with or without

Table 1 The main generalized alarms produced by our algorithm with real dataset

Alarm type Src-IP Src-Port Dst-1P Dst-Port Time Count
FULL XMAS scan Router Any Inside Any Any 51,935
(ftp_telnet) FTP traffic Internet Non-priv Inside 21 Any 35,780
encrypted

DDOS Stacheldraht agent Internet Undefined Inside Undefined Any 25,511
— handler skillz

http_inspect: BARE BYTE Inside Non-priv ip2 80 Any 9,021
UNICODE ENCODING

ICMP redirect host ip1 Undefined DMZ Undefined Work_day 7,291
Telnet Access Internet Non-priv ipie 23 Work_day 2,867

@ Springer

New data mining technique to enhance IDS alarms quality

51

alarm clustering, there are cases where we do not have enough
information to identify root causes with certainty. However,
in most cases, the obtained generalized alarms was easy to
interpret.

We used the historical alarms to generate the generalized
alarms which are presented in Table 1. Instead of removing
these root causes, the discovered root causes were converted
to rules. These rules were then used to filter the alarms of
the second month reducing the alarms load by about 93%.
Therefore, resolving of root causes reduces the work of the
subsequent month.

5.2 Results on DARPA 1999 dataset

The objective of this set of experiments is to analyze the
clustering results, to show that the filtering with our method is
safe, to state how the results affected by the NOD parameter,
and to find the best value for NOD parameter. The dataset
used in this set of experiments is DARPA 1999 dataset. We
used this dataset to compare our algorithm with others.The
alarms with this dataset are divided into five weekly logs.
We performed five clustering runs and four filtering runs on
this dataset; each of the runs producing up to several hundred
clusters.

Figure 6 shows the performance of our system for all clus-
tering and filtering runs for DARPA 1999 dataset. It should
be noted that we did not include the first week because we
can not apply filters on it; but it can be used as a classifier
for the second week. The false alarms clusters of any week
are converted to rules in order to filter out the false alarms in
the subsequent week. This can be noted from the third and
fourth columns in Fig. 6.

The reduction ratio with this experiment was about 70%
as can be seen in Fig. 7 while the number of missed true
alarms was 955 alarms. When we investigated the filtered
true alarms, we found that all of them were scan alarms.

35000 A

[J#of alerts
of covered (Clustering)
oo || | | BB e
§ #of FP
(2] § # of FP missed
t 21000 - %
S § N
S 14000 §:§ 3§
e] 3
N .§
N N
7000 2\ A\
o A\

Weeks of DARPA 1999 dataset

Fig. 6 Clustering and filtering runs for the DARPA 1999 dataset

of alerts
of filtered false alerts
of filtered positives

100000 ~

80000

60000

of alerts

40000 —

20000

DARPA 1999 dataset

Fig. 7 Total alarms reduction and the missed true positives for the
DARPA 1999 dataset

Those true alarms belong to the following attacks: training
attacks #20 (ip sweep, week2, 761 alarms), test attacks #41
(port sweep, week4, 170 alarms), #54 (probe, week 5, 16
alarms), #55 (port sweep, week 5, 8 alarms).

When we investigated the filtering rule that filters out
attack #20, we found that there was the same attack in week
one but labelled as false alarms because week one is free
of attacks. This leaves us with the remaining three incidents,
namely testing attacks #41, #54, #55 for which our algorithm
removed true alarms. As we have note, all those incidents are
scanning incidents (i.e., port sweep, probe). Depending on
site policies, port scans have become so common on the Inter-
net that most administrators consider them as mere nuisances
and do not spend any time or resources in tracking down
their sources [31]. However, intrusion detection is a multi-
stage process, in which after an incident has been detected,
all incidents it comprises are found using link-mining (ana-
lyzing related alarms). This means that even if those alarms
were removed, the incidents they belong to would not have
been missed, and they are likely to be rediscovered in the
forensic stage [32].

We will try to analysis the clustering results by using the
measures suggested by Pietraszek [32]. These measures are
as follows: First, average fraction of an incident covered by
clusters. The average incident coverage shows whether and
how completely incidents are covered by clusters. Ideally,
we want this value to be either close to O or close to 1. In the
first case, the incidents are not covered at all (means that only
false alarms are clustered). In the second case, the incident is
covered completely (allowing for the derivation of rules for
true alarms). Second, total fraction of all incidents covered.
Finally, the average number of clusters covering an incident,
the average number of clusters per incident shows how spe-
cific the clusters are. This value should be close to 1 as this

@ Springer

52

S. O. Al-Mamory, H. Zhang

Table 2 The application of three measures on DARPA 1999 dataset
with different NOD parameter values (Clustering stage)

NOD #ofresulted Average Fractionof all Average # of
value clusters incident incident events clusters covering
coverage covered an incident
4,278 0.69 0.96 221
3,352 0.7 0.97 2.13
2,539 0.7 0.97 2.11
10 1,807 0.71 0.99 2.11
12 1,663 0.71 0.99 2.1
14 1,383 0.71 0.99 2.08
16 1,027 0.73 0.99 2.06
18 878 0.73 0.99 2.06
20 701 0.75 0.99 2.05
22 448 0.81 0.99 2.09

is the case, in which clusters accurately model the intrusions
[32]. The values of these three measures are presented in
Table 2 with different NOD values.

Based on the clustering results appeared in Table 2, we
do note (from the third column) that most of the incident
events are covered in the clustering stage. In addition, the
value of the fraction of all incident events covered measure
(i.e., the fourth column) is higher than the average incident
coverage measure, which means that the small incidents is
not covered. When we labelled the alarms manually, we noted
that sometimes Snort had triggered more than one alarm for
the same incident. This was because all Snort rules were used
in the alarms generation. Therefore, the value of the average
number of clusters covering an incident measure (the last
column) did not approach to one.

The influence of the NOD parameter can be seen in Table 2.
The small value for it causes the spread of the root causes
over the clusters; in addition, the number of clusters would be
increased. The NOD parameter value must be adjusted care-
fully. To do that, we have used the SD validity index which
appeared in Eq. (4), the results can be shown in Fig. 8. In this
figure, we do note that the best value for the NOD parameter
is associated with the minimum SD index value; which is 18.
This value can also be seen in Table 2 as the best (or near the
best) value. We conclude from this figure that the SD index
is capable of locating the best value for NOD parameter.

We have seen that the complexity of our algorithm is
O(nxk). The processing time per alarm (averaged per 5,000
alarms) can be seen in Fig. 9. In addition, the impact of NOD
parameter on the execution time can be seen in Fig. 10. In
this figure, we do note that when the value of NOD parameter
approaches to zero, the execution time will increase and also
the number of resulted clusters will increase.

@ Springer

0.050
0.049

0.048 - /
0.047 - > /

0.046
_ \

0.045

SD-Index value

N

NOD value

Fig. 8 The application of SD validity index (Eq. 4) on the DARPA
1999 dataset with different NOD values suggests that the best value for
the NOD parameter is 18

12 - IV S .

e

)

Execution time (s
[}
—

o—_

0 2 4 6 8 10 12 14 16 18 20
Number of alarms (avg. per 5000 alarms)

Fig. 9 The performance of the proposed algorithm

Execution Time (min)

NOD value

Fig. 10 The impact of the NOD parameter on the proposed algorithm
performance

New data mining technique to enhance IDS alarms quality

53

6 Discussion

Data mining is an important field for intrusion detection,
where the alarm filters can be used to remove the most preva-
lent and uninteresting false positives. From the literature,
Julisch [2] outlined an effective approach to reduce false
positives in sensor alarms reports by clustering them with
abstraction and then using the clusters to discover and under-
stand the root causes of alarms.

Next, we examine how well the proposed algorithm meets
the requirements listed in Sect. 3.2:

e Scalability The performance of our algorithm depends on
the number of received alarms and the number of clus-
ters in them as we have seen in preposition 1. The pro-
posed system was tested on an AMD Athelon processor
2.01 GHz with 512 RAM running Windows XP,
and processed about 150,000 alarms in less than three
minutes.

e Noise tolerance The noise, typically found in intrusion
detection alarms, leads to overgeneralization problem.
The proposed algorithm uses the conditional generaliza-
tion to avoid this problem. The conditional generaliza-
tion depends on carefully tuning the NOD parameter. The
NOD parameter will isolate the noise out of the main clus-
ters because the noise has different features values with
them.

e Multiple feature types The AOI has the capability of deal-
ing with a wide variety of attributes types, such as numer-
ical attributes, categorical attributes, time attributes, etc
[6]. The proposed algorithm makes use of the general-
ization concept of AOI and the neighboring concept with
resemblance to AOI. As a consequence, it can deal with a
variety of attribute types. we have seen how the proposed
technique processed different features types of alarms like
IP addresses, time, count, and port features.

e Ease of use The two main inputs to the algorithm are the
hierarchies and the NOD parameter. The defining of hier-
archies requires some expertise in the application domain.
The hierarchies are defined for once, so they are static. A
heuristic has been presented in Sect. 4.4 to set the NOD
parameter.

Table 3 Comparison between our system and the other systems

e Interpretability By avoiding overgeneralization, we were
got precise generalized alarms which facilitate the inter-
pretation process.

To avoid overgeneralization, we compute the distance
between the new alarm and all clusters centers, then the gen-
eralization occurs if the distance value is below NOD value;
this checking is done before generalization. Furthermore, the
generalization does not occur unless there is a guarantee that
all the features of an alarm and a compared cluster’s center
are similar.

The suggested measure, Mp, has a great influence on
the results. Given two alarms a; and ap, which belong to
the same generalized alarm; the smaller the Dist(aj, ay) is,
the more accurate the measure. As have shown in Sect. 4.2,
the used measure minimized the distances in such case while
the semantics of the distances are retained. The more acc-
urate the measure is, the lesser the generalization steps. Min-
imizing the generalization steps means that the results capture
more detailed information about the alarms; which facilitate
the interpretation of the results.

One interesting thing of the proposed algorithm is its stop
condition. It passes over the table of alarms for once and tries
to find the nearest cluster for any alarm. If an alarm is far from
all clusters centers then a new cluster would be created, this
process continues until all alarms are considered.

We have compared our method with five different meth-
ods having different techniques which are filtering [32,33],
classification [32], aggregation [4], and prioritization [31].
The comparison measure is the Reduction Ratio (RR) which
is defined by Valeur [34] as in Eq. (5). Some of the previous
methods had used samples from DARPA 1999 dataset; how-
ever, we have used all the five weeks in DARPA 1999 dataset
for comparison. Table 3 presents the comparison results. We
can see that our method has the best reduction ratio. The
nearest reduction ratio to ours is the work of Wang [33];
however, the size of training and test data are definitely too
small to generate meaningful results. Our algorithm reduced
the alarms load by about 70% making the security analyst
focuses on the remaining 30% alarms.

. . #input alarms — #output alarms
Reduction Ratio = - 5)
#input alarms

Julisch Perdisci Pietraszek Valeur Wang Our

[32] [4] [32] [31] [33] algorithm
alarms 59,812 52,540 59,812 7,985 13 233,615
Duration 5 weeks 3 days 5 weeks 2 weeks sample 5 weeks
Technique Filtering Aggregation Classification Prioritization Filtering Filtering
RR (%) 53 58.9 60 67.8 69.1 69.9

@ Springer

54

S. O. Al-Mamory, H. Zhang

The reduction ratio greatly depends on the position of the
IDS and individual network (i.e., number of false alarms). For
example, the IDS located in the Intranet triggers huge number
of false alarms due to network management systems; hence
the reduction ratio would be high. On the other hand, most
of alarms triggered by the IDS, which monitors the internet,
are real attacks. The real attacks are fleeting and then have
small influence on the reduction ratio. As a result, it does
not seem to expect this method to perform equally on other
networks.

It should be noted that this type of work has some limita-
tions. First, the filtering would be unsafe in case of misclassi-
fying true positives as false positives. The writing of filtering
rules requires care and experience; otherwise, the risk of dis-
carding true positives can be high. The filtering in this work
does not increase undetected attacks or miss true positives.
As suggested by Julisch, if the security analyst is skilled, the
environment does not change in ways that the security ana-
lyst could not anticipate, and the attacker does not know the
filtering rules, then the filtering is safe [6]. These factors,
however, is no limitation of our method. Nevertheless, write
specific rules, keep rules secret, remove outdated rules, and
filter when not vulnerable are guidelines recommended by
Julisch for safe filtering [6]. Second, different hierarchies
can be constructed on the same feature based on different
viewpoints or preferences. Moreover, different rules can be
extracted from the same set of data using different hierar-
chies [35]. Consequently, the usefulness of resulting clusters
would depend on the quality and possibly granularity of the
hierarchies.

7 Conclusions and future work

This paper has addressed the problem of IDSs overburdening
the security analyst by generating thousand of alarms per day.
A new data mining technique has been proposed to cluster
alarms and to extract filters from these clusters. The extracted
filters is related to problems in the network (may be config-
uration problems) and can be used to filter out many false
positives. A new measure has been used which depends on
background knowledge of the monitored network. The pro-
posed technique is designed to pass over the table of alarms
for once. The averaged reduction ratio which was obtained
from different datasets was about 82% making the security
analyst focuses on the remaining alarms.

Our future work has three main directions. First, applying
of this method across different networks to average the results
is worthy. Second, depending on vulnerabilities information
of the protected network, the process of the extracting the
good filters can be automated. Finally, we want to use the
proposed technique to solve problems in another research
field.

@ Springer

Acknowledgments The authors thank the anonymous reviewers for
their valuable comments and suggestions in improving this paper. This
research was supported by Project 973 (2007CB311101).

References

1. Manganaris, S., Christensen, M., Zerkle, D., Hermiz, K.: A data
mining analysis of RTID alarms. J. Comput. Netw. 34, 571-577
(2000)

2. Julisch, K.: Clustering intrusion detection alarms to support root
cause analysis. ACM Trans. Inf. Syst. Secur. 6, 443-471 (2003)

3. Yu, J.,, Reddy, Y.V.R., Selliah, S., Reddy, S., Bharadwaj, V.,
Kankanahalli, S.: TRINETR: an architecture for collaborative
intrusion detection and knowledge-based alert evaluation. J. Adv.
Eng. Inf. 19, 93-101 (2005)

4. Perdisci, R., Giacinto, G., Roli, F.: Alarm clustering for intru-
sion detection systems in computer networks. J. Eng. Appl. Artif.
Intell. 19, 429-438 (2006)

5. Siraj, A., Vaughn, R.: Multi-level alert clustering for intrusion
detection sensor data. In: Proceeding of North American Fuzzy
Information Processing Society International Conference on Soft
Computing for Real World Applications, Michigan (2005)

6. Julisch, K.: Using root cause analysis to handle intrusion detection
alarms, PhD dissertation, University of Dortmund (2003)

7. Al-Mamory, S.O., Zhang, H.: A survey on IDS alerts processing
techniques. In: Proceeding of the 6th WSEAS International Con-
ference on Information Security and Privacy (ISP *07), Spain, pp.
69-78 (2007)

8. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Proceed-
ing of the Recent Advances in Intrusion Detection. LNCS, vol.
2212, pp. 54-68 (2001)

9. Dain, O.M., Cunningham, R.K.: Fusing a heterogeneous alert
stream into scenarios. In: Proceeding of the 2001 ACM Workshop
on Data Mining for Security Applications, pp. 231-235 (2001)

10. Ning, P, Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for
analyzing intrusion alerts. ACM Trans. Inf. Syst. Secur. 7, 274—
318 (2004)

11. Morin, B., Me, L., Debar, H., Ducasse, M.: M2D2: A formal data
model for IDS alert correlation. In: Proceeding of the International
Symposium on Recent Advances in Intrusion Detection, pp. 115—
137 (2002)

12. Pietraszek, T.: Using adaptive alert classification to reduce false
positives in intrusion detection. In: Proceeding of the Recent
advances in intrusion detection, France, pp. 102-124 (2004)

13. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The
MIT Press, Cambridge (2001)

14. Bellovin, S.M.: Packets found on an Internet. J. Comput. Commun.
Rev. 23,26-31 (1993)

15. Han, J., Fu, Y.: Exploration of the power of attribute-oriented
induction in data mining. In: Fayyad, U.M., Piatetsky-Shapiro, G.,
Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discov-
ery and Data Mining. AAAI/MIT Press, Cambridge, pp. 399421
(1996)

16. Han,J., Cai, Y., Cercone, N.: Data-driven discovery of quantitative
rules in relational databases. IEEE Trans. Knowl. Data Eng. 5,
29-40 (1993)

17. Julisch, K.: Mining alarm clusters to improve alarm handling effi-
ciency. In: Proceeding of the 17th Annual Computer Security
Applications Conference, New Orleans, pp. 12-21 (2001)

18. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review.
ACM Comput. Surv. 31, 264-323 (1999)

19. Theodoridis, S., Koutroubas, K.: Pattern Recognition. Academic
Press, New York (1999)

New data mining technique to enhance IDS alarms quality

55

20.

21.

22.

23.

24.

25.

26.

217.

28.

Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering valida-
tion techniques. J. Intell. Inf. Syst. 17, 107-145 (2001)

Berry, M.J.A., Linoff, G.: Data Mining Techniques for Marketing,
Sales and Customer Support. Wiley, New York (1996)

Halkidi, M., Vazirgiannis, M., Batistakis, I.: Quality scheme assess-
ment in the clustering process. In: Proceeding of the 4th European
Conference on Principles of Data Mining and Knowledge Discov-
ery, pp. 265-276 (2000)

Rezaee, M.R., Lelieveldt, B.B.F., Reiber, J.H.C.: A new cluster
validity index for the fuzzy c-mean. Pattern Recognit. Lett. 19,237-
246 (1998)

Sharma, S.C.: Applied Multivariate Techniques. Wiley, New York
(1996)

Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE
Trans. Pattern Anal. Mach. Intell. 13(8), 841-847 (1991)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpre-
tation and validation of cluster analysis. J. Comput. Appl.
Math. 20(1), 53-65 (1987)

Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE
Trans. Syst. Man Cybern. Part B 28(3), 301-315 (1998)

Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE
Trans. Pattern Anal. Mach. Intell. 1(2), 224-227 (1979)

29.

30.

31.

32.

33.

34.

35.

MIT Lincoln Laboratory: 1999 DARPA intrusion detection evalu-
ation data set (1999). http://www.1l.mit.edu/IST/ideval/data/1999/
1999dataindex.html

Roesch, M.: Snort-lightweight intrusion detection for networks. In:
Proceeding of the 1999 USENIX LISA Conference, pp. 229-238
(1999)

Valeur, F., Vigna, G., Kruegel, C., Kemmerer, R.A.: A compre-
hensive approach to intrusion detection alert correlation. In: IEEE
Transactions on Dependable and Secure Computing 1(3) (2004)
Pietraszek, T.: Alert classification to reduce false positives in intru-
sion detection. PhD dissertation, Institut fiir Informatik, Albert-
Ludwigs-Universitit Freiburg, Germany, July 2006

Wang, J., Lee, I.: Measuring false-positive by automated real-
time correlated hacking behavior analysis. In: Proceedings of the
4th International Conference on Information Security. LNCS, vol.
2200, pp. 512-535 (2001)

Valeur, E.: Real-time intrusion detection alert correlation. PhD dis-
sertation, University of California, Santa Barbara, June 2006
Han, J., Cai, Y., Cercone, N.: Knowledge discovery in databases:
an attribute-oriented approach. In: Proceeding of the 18th Interna-
tional Conference on Very Large Databases, pp. 547-559 (1992)

@ Springer

http://www.ll.mit.edu/IST/ideval/data/1999/1999dataindex.html
http://www.ll.mit.edu/IST/ideval/data/1999/1999dataindex.html

	New data mining technique to enhance IDS alarms quality
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Data mining technique requirements
	3.2 Framework overview

	4 The proposed algorithm
	4.1 Generalization hierarchies
	4.2 Distance measures
	4.3 Generalized alarms generation
	4.4 NOD setting

	5 Experiments
	5.1 Results on a live network
	5.2 Results on DARPA 1999 dataset

	6 Discussion
	7 Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

