
J Comput Virol (2007) 3:267–283
DOI 10.1007/s11416-007-0056-y

ORIGINAL PAPER

TAMAP: a new trust-based approach for mobile agent protection

Salima Hacini · Zahia Guessoum · Zizette Boufaida

Received: 31 January 2007 / Revised: 24 May 2007 / Accepted: 4 June 2007 / Published online: 28 June 2007
© Springer-Verlag France 2007

Abstract Human activities are increasingly based on the
use of distant resources and services, and on the interac-
tion between remotely located parties that may know little
about each other. Mobile agents are the most suited tech-
nology. They must therefore be prepared to execute on dif-
ferent hosts with various environmental security conditions.
This paper introduces a trust-based mechanism to improve
the security of mobile agents against malicious hosts and to
allow their execution in various environments. It is based
on the dynamic interaction between the agent and the host.
Information collected during the interaction enables genera-
tion of an environment key. This key allows then to deduce
the host’s trust degree and permits the mobile agent to adapt
its execution accordingly to the host trustworthiness, its beha-
vior history and the provided Quality of Service (QoS). An
adaptive mobile agent architecture is therefore proposed. It
endows the mobile agent with the ability to react with an
unexpected behavior.

1 Introduction

New information systems and recent applications are often
distributed and characterized by a dynamic, unpredictable
and aggressive environment. Furthermore, distributed appli-
cations such as telecommunication systems, information

S. Hacini (B) · Z. Boufaida
LIRE, Mentouri University, Constantine, Algeria
e-mail: salimahacini@gmail.com

Z. Boufaida
e-mail: zboufada@gmail.com

Z. Guessoum
LIP6, Pierre et Marie Curie University, Paris, France
e-mail: zahia.guessoum@lip6.fr

management, on-line auctions or service brokering are now
increasingly being designed as a set of mobile agents. These
mobile agents are active and autonomous software entities
that can suspend their behavior, move to another host of the
network, and continue their activity, deciding where to go
and what to do along the way [21,44]. They provide seve-
ral advantages to design and control distributed applications
such as autonomy, dynamic adaptation, data and control dis-
tribution, a better use of the network resources and com-
munication reduction with respect to latency, bandwidth and
connection time. The benefits from using mobile agents are
great. However, mobile agents bring two kinds of serious
security risks: the malicious mobile agent and the malevolent
host threats.

Research works related to the security of the mobile agents
follow thus two aspects. The first aspect concerns the pro-
tection of the host against malicious mobile agents while the
second aspect concerns the protection of the mobile agents
against malevolent visited hosts. The host protection has been
a subject of a large interest and has emphasized a number
of techniques such as code signing [40] sandboxing [19,
44], proof carrying code [38] state appraisal [14] and path
histories [11]. These techniques provide an acceptable host
security level. However, the mobile agent protection against
malicious host remains an open issue and represents the scope
of this paper.

Malicious host may try to attack mobile agent in order to
obtain service without providing payment or to remove pri-
vate information from the agent’s memory. Other examples
of such attacks are malicious alteration of its code and control
of its execution. Attacks can also be due to a host who tries
to analyze the behavior of a malicious agent. It is the case,
for example, of a malware (e.g., the mobile agent) and the
anti-virus (e.g., the host with a sandbox) [3]. The agent is vul-
nerable while it is running on the host’s execution platform.

123

268 S. Hacini et al.

Its owner therefore requires some guarantees concerning the
protection of the agent against malicious host threats. Thus,
the mobile agent has to protect itself from any act aiming at
the deterioration, the destruction or the handling of its code,
its state or its data.

The protection of mobile agents against malicious hosts’
behaviors represents a challenging research area [3,5–7,16,
30,44]. Several approaches have been introduced such as
tamper proof hardware [24,48,55], function hiding [46,47],
black box [25] or clueless agents [41]. These approaches help
to enhance the security of code executing in an untrusted envi-
ronment. Nevertheless, they present different disadvantages.
For instance, the tamper proof hardware has a prohibitive cost
and the function hiding approach is not suitable for any kind
of mobile agent task. It is restricted to the polynomial and
rational functions. So, an important challenge is to introduce
a solution with a reasonable cost and an acceptable level of
security. The protection approach presented here has a dual
interest since it helps the trusted mobile agent to protect itself
against malicious hosts’ attacks and could also be exploited
by malicious mobile agent to resist customer’s analysis (e.g.,
AV software).

This paper deals with the protection of the mobile agent
behavior from any analysis aiming to divulge it. For this
purpose, we propose an adaptive mobile agent architecture
which offers the mobile agent the ability to react with an
unexpected behavior. The mobile agent reaction is based on
its ability to estimate the host trustworthiness, to control its
own behavior history and to exploit the various Qualities of
Service provided by the application. The host trustworthiness
estimation is based on the diagnostic of an environment key.
The environment key generation is derived from the infor-
mation collected during the dynamic interaction between the
mobile agent and the host.

The paper is organized as follows: Sect. 2 exposes some
related work from which we inspired our idea. Section 3 gives
an overview of the proposed approach. Section 4 describes
the trust estimation process. Section 5 shows the adaptive
mobile agent architecture and outlines the functionality of its
principal components. Section 6 gives further details about
the mobile agent implementation. Finally, Sect. 7 summaries
our contribution and describes the future work.

2 Related work

The technology of mobile agents has introduced some serious
problems and has emphasized existing security issues. Seve-
ral works have underlined the importance of protecting host
against malicious mobile agents [5–7,30]. This problem is
out of the scope of this paper. Moreover, mobile agents
become especially vulnerable when traveling among hosts

network. The protection of the mobile agents against mali-
cious hosts is thus an open issue [5,6].

This section presents the most important techniques for
providing security in the protection of mobile agents. It also
underlines the evolution of the use of the trust concept as
factor enhancing security in mobile agent based systems.

2.1 Agent code protection

The mobile agents are exposed to various threats from hosts
they visit. This problem is difficult because the visited host
has a full control on the mobile agent execution. Several
approaches have been proposed. They principally aim at
making the attacks useless or detectable. Among the exis-
ting approaches, we find:

Cryptographic approaches

Examples of such approaches are execution tracing or hiding
function. The execution tracing approach enables detection
of any possible visited host misbehavior such as the modi-
fication of the mobile agent code, state, and execution flow.
It is based on cryptographic traces that are collected during
an agent’s execution on different hosts. It has some limita-
tions, such as the potential large size. Another limitation of
this approach is that the agent’s owner needs to wait until
it obtains suspicious results in order to run the verification
process. Also, this technique is considered to be too dif-
ficult to use in the case of multi-threaded agents [49,50].
A new version of the execution tracing technique, proposed
by Tan and Moreau [49] modifies the original approach by
assigning the trace verification process to a trusted third party,
the verification server, instead of depending on the agent’s
owner.

In hiding function approach, Sander and Tschudin
[46,47], describe an approach to code protection that relies on
the execution of encrypted functions. This approach is based
on executing a program embodying an encrypted function on
a mobile agent platform. The mobile agent code is a kind of
encrypted program which can be executed on encrypted data
without decryption of code and data at all. This approach
ensures that the platform does not learn anything substantial
about the encrypted function. Thus, it offers the confidentia-
lity of the execution. However, the approach remains theo-
retical and coding is applied only on a restricted whole of
functions (polynomial and rational functions).

Environment key

Riordan and Schneier [41] use data of current environment
to construct a decryption key. When the proper environment
information is located, the key is generated, the cipher-text is
decrypted, and the resulting plain-text is acted upon. Neither

123

TAMAP: a new trust-based approach 269

can the mobile agent precisely predict its own execution at
the receiver host, nor can the host foresee the incoming agent
task. The approach allows the agent owner to specify some
constraints on the environment where the mobile agent will
execute. Filiol [15] uses the environment key as a basic tech-
nique to forbid a Malware code analysis. Environment key
generation can be used when the receiver is not aware of the
conditions required to the execution of the requested service.
This case corresponds to our mobile agent behavior analy-
sis problem and is used by our approach to estimate host
trustworthiness.

Trusted hardware approaches

They are used by researches to guarantee a certain behavior
of a system. Herzberg and Pinter [24] describe a device that
can be used to protect software against piracy. A more recent
approach by Yee and Tygar [55] ensures that the system func-
tions securely. These approaches are powerful but they have
a too expensive cost.

Obfuscation techniques

Approaches using Obfuscation techniques are explored to
protect the code of a mobile agent from reverse engineering
for some minimum time. Obfuscation transforms a program
into another program that has equivalent behavior but which
is harder to understand. Fritz Hohl [25] converts the agent of
origin into a black box by using obfuscation algorithms. An
expiration date is attached to the black box. This approach
prevents any attempt with sophisticated code analysis and
any replay. It allows complex functions but guarantees pro-
tection only for a certain time interval. Barak et al. [2] studied
the theoretical limits of obfuscation techniques and showed
that in general achieving completely secure obfuscation is
impossible. Larry D’Anna [12] states that obfuscation can
prevent a malicious host from observing or predictably tam-
pering with code and data in the running system, however, it
cannot prevent the program from being reverse engineered.
Beaucamps et al. have also studied how to practically obfus-
cate executable code. They define τ -obfuscators whose role
is to hide non trivial results at least for time τ [3]. This practi-
cal obfuscation technique has been essentially considered in
the case of malware context and under some very particular
conditions. We use obfuscation techniques in our approach to
obtain various versions of the same task and thus to provide
the mobile agent several equivalent behaviors that generate
the same result (see Sect. 3.3).

The k-out-of-n threshold scheme approach

They are also approaches based on the subdivision of the
transmitted secrecy in several small secrecies. It is the case

in the k-out-of-n threshold scheme approach [4] the secrecy
of the transaction is distributed between n duplicated mobile
agents. The latter are emitted towards different hosts. The
confidentiality is dealt with since no mobile agent knows
the totality of information. This approach does not take into
account the integrity but it is an example of the “secure dis-
tributed computing” concept: parts can jointly calculate the
result of a particular function without revealing the inputs.
Filiol [17] uses a similar approach to protect antivirus from
analysis by an attacker. He describes a combinatorial, proba-
bilistic malware pattern scanning scheme that limits black-
box analysis. This protection can only be bypassed in the case
where there is collusion between a number of attackers. This
idea appears also in the code-on-demand or the co-operating
agent techniques. The Code-On-Demand approach [51] pro-
tects the mobile agent integrity by using dynamically upgra-
deable agent code, in which new agent function modules
can be added and redundant ones can be deleted at runtime.
This approach enhances code privacy, reduces transport cost
and helps the recoverability of agents after malicious attacks;
while the co-operating agent technique [26,42,43] distributes
critical tasks of a single mobile agent between co-operating
agents. This technique reduces the possibility of the shared
data being pilfered by a single host. This idea is employed
by our approach where the service (secret) is subdivided in
several tasks and an abstract expression shows the selected
execution.

2.2 Trust estimation

Trust plays an important role in e-commerce and e-business
applications. It is a key to their acceptance and their general
deployment.

The concept of trust has been a subject of large interest
in different research areas like economics, game theory and
multi-agent systems [8,13]. Obtaining and maintaining trust
estimation is a serious open problem. Emphasis in the litera-
ture is mostly on techniques for preventing malicious agents
from harming their execution environment. Many general
trust models have been proposed to introduce the trust notion
in the context of general distributed system applications
[1,18,32]. However only a small number of these models
have addressed the issues of integrating trust with security in
mobile agent based systems [19].

Beth [54] proposed one of the earliest trust models for
authentication in distributed systems focusing on relationship
modeling while Abdul-Rahman et al. [1] provided a general
model based on recommendations. But these models did not
address the trust dynamics based on behavior.

Wilhelm et al. [52,53] give one of the more comprehen-
sive discussions on the issue of trust in mobile systems. They
identify what they referred as the four foundations of trust,
namely: blind trust, trust based on (a good) reputation, trust

123

270 S. Hacini et al.

based on control and punishment and trust based on policy
enforcement. Their solution to the trust in mobile agent sys-
tems problem is the CryPO protocol, based on tamper-proof
hardware to provide tamper-proof environments, which are
the foundation for the agent executor. Agents assert which
environment manufacturers they trust. The protocol uses cer-
tificates and encryption technology to ensure security and
is essentially an extension of the certification framework.
This solution provides an easier way for a new service pro-
vider to establish itself in the market; it also allows an agent
owner to protect specific data in a mobile agent. However,
the used trust notion is static and is mapped to a particular
manufacturer of the hardware; hence this approach does not
allow dynamic trust update, and then limits the flexibility in
application.

Manchala [35,36] develops a model based on trust-related
variables such as the cost of the transaction and its history,
and defines risk-trust decision matrices. The latter are used
together with fuzzy logic inference rules to determine whe-
ther or not to transact with a particular party.

Tan et al. [49] propose a trust model specifically for mobile
agent security using Trusted Third Parties (TTPs) in the form
of verification servers, but they do not address how trust can
be integrated with security systems

Braynov et al. [8] give a solution that does not rely on
collecting and analyzing information about untrustworthy
agents. Instead, they propose an incentive-compatible mecha-
nism in which agents truthfully reveal their trustworthiness at
the beginning of every interaction. In this mechanism, agents
report their true level of trustworthiness, even if they are
untrustworthy.

Cahill et al. propose the SECURE project [9] which
investigates the design of security mechanisms for pervasive
computing based on the human notion of trust. The central
contribution of SECURE is to provide entities with a basis
for reasoning about trust and risk embodied in a computatio-
nal framework that can be adapted to a variety of application
scenarios. But, it is not clear how they develop the dynamical
adaptation of trust.

Dimitrakos [13] introduces metrics, costs and utility func-
tions as parameters of an algorithm that produces the trust
policy for a given trusting decision. Nevertheless, this work
lacks a quantitative definition of the various involved
measures.

Josang [28,29] proposes a scheme for propagating trust
through computer networks based on public key certificates
and trust relationships, and demonstrates how the resulting
measures of trust can be used for making decisions about
electronic transactions. He also defines a model of trust com-
posed of a reliability trust as the probability of transaction
success and a decision trust derived from the decision sur-
face. Trust adaptability with time has not been considered in
the model.

Chin Lin et al. [32–34,37] suggest a hybrid trust model
employing soft trust mechanisms with constructs such as
recommendation, direct experiences via interactions and
observations. These mechanisms are used to complement
hard trust (based on cryptographic mechanisms) for enhan-
cing the mobile agent security in situations where full authen-
tication trust is not available due to absence or unavailability
of trusted third parties.

Castelfranchi et al. [10] claim the importance of a cogni-
tive view of Trust. They argue in favor of a cognitive view
of trust as a complex structure of beliefs and goals, implying
that the trustor must have a “theory of the mind” of the trus-
tee. Such a structure of beliefs determines a degree of trust
and an estimation of risk, and then a decision to rely or not on
the other. The decision is also based on a personal threshold
of risk acceptance/avoidance. They explain rational and irra-
tional components and uses of trust. Their work represents a
support of our approach where trust value is based on trust
ingredients (evaluation of the situation and the behavior).

These trust models generate a subjective single value
which does not reflect the exact cause of the lack of trust.
Thus, the provided decision could be inadequate. Some of
them use also the reputation of the host as factor intervening
in the trust estimation. It is not necessary for the mobile agent
to know the reputation of the visited hosts that can be new in
the network. In our approach, the trust estimation is dynamic
and it is used to enable the mobile agent to adapt its execution
in untrusted environments.

Our approach exploits opportunities offered by the dyna-
mic adaptability mechanism [21,31,39] to protect the mobile
agent against the visited host. The dynamic adaptability
mechanism is used to offer the mobile agent the possibility to
modify its behavior. This ability makes it unpredictable and
complicates its analysis. The idea is that the mobile agent
must verify the customer trustworthiness and present to him,
according to the trust he inspires, an appropriate behavior.

3 The TAMAP principles

TAMAP is a Trust-based Approach for Mobile Agent Pro-
tection. It is founded on three main principles: a protection
protocol, a trust estimation mechanism and a dynamic adap-
tation process.

The protection protocol aims to use reliable mechanisms
for the protection of the mobile agent code (e.g., encryption,
hashing, digital signature, etc.). It also protects the service
provider and the mobile agent communication.

The trust estimation mechanism enables to establish host
trustworthiness and thus the selection of the most appro-
priate Quality of Service (QoS). This mechanism relies on
the customer data and their comparison with those held by
the service provider. This assessment enables the estimation

123

TAMAP: a new trust-based approach 271

of the trust degree and thus the selection of suitable QoS (see
Sect. 4). Furthermore, collected data are used for the environ-
ment key computation. The environment key is computed by
the mobile agent on the side of the customer as well as on the
service provider side. It is employed as a symmetrical key to
encrypt and to decrypt the emitted QoS. Consequently, the
trust estimation mechanism is based on the generated envi-
ronment key and it is identified by the following steps:

1. The trust parameters inventory (the establishment of a
set of parameters whose values must be checked).

2. The trust parameters evaluation.
3. The trust quantification.
4. The QoS selection.

The dynamic adaptation process uses the provided QoS and
the mobile agent history to choose the most adequate execu-
tion (see Sect. 5). This selection is based on the ability of the
mobile agent to vary its behavior. The adaptation is statically
designed and dynamically performed. It is supported by a
reflexive mobile agent architecture.

The proposed approach is based on some assumptions:

– A contract is built beforehand between the customer and
the service provider.

– The service provider knows some confidential informa-
tion concerning the customer (e.g., contract reference or
password).

– The host knows something about itself or about the envi-
ronment that the agent does not know.

– The information that the customer knows has an inci-
dence on the agent owner decision to execute or not the
requested service.

– The mobile agent has to calculate the environment key
without knowing whether the host private information is
right or not.

– The service provider can already have an idea on the for-
mer trustworthiness of the host.

In this section, we first introduce an example that will be
used to illustrate the proposed approach. We then describe the
protection protocol, present the mobile agent behavior model
and specify the proprieties of the provided service. Finally,
we discuss the features of a secure environment, underline
the trust and security relationship and give a definition of
trust.

3.1 A simple example

The context of this work is given by the scenario where a
service provider uses a mobile agent to perform a service.
Arrived at the customer host, the mobile agent tries to detect
the various conditions which make it trustful and which must

be taken into account for the execution of the provided ser-
vice. The mobile agent generates an environment key. It then
uses this key for the trust estimation and thus the selection
of the most suitable behavior.

To illustrate our approach, we consider the example where
an online provider offers some services relying on some kinds
of heuristic viruses scanners. The mobile agent tries to protect
its behavior to prevent its analysis. Its protection is mainly
based on its capacity of adaptation which enables it to gene-
rate, for the same input, various behaviors.

The service provides different QoS. It is appropriate for
the reaction of the mobile agent after the trust estimation step.
Examples of QoS are:

QoS0: Do not perform the service.
QoS1: Do not perform the service and notify the host.
QoS2: Scan the computer and display the result.
QoS3: Scan the computer, display the result and set up an

antivirus of a lower performance.
QoS4: Scan the computer, display the result and set up an

antivirus of a medium performance.
QoS5: Scan the computer, display the result and set up an

antivirus of a higher performance.
QoS6: Scan the computer, display the result and set up an

antivirus of lower performance and enable its update.
QoS7: Scan the computer, display the result and set up an

antivirus of medium or higher performance and
enable its update.

QoS8: Scan the computer, display the result and set up an
antivirus of higher performance and enable its update.

3.2 Protection protocol

This protocol aims to protect a mobile agent code against
malicious hosts as well as the service provider and the mobile
agent communication. Its primarily objective is the genera-
tion of the environment key. The latter has an important role
since it defines the trust degree of the target host. It is also
used, at the customer side, to decrypt the received QoS. This
key is calculated using information collected at the target
host and the mobile agent identifier, which is unique. It is
based on a one way hash function coupled with a public key
encryption scheme. In order to protect the environment key
and to avoid transmitting it, the environment key is calculated
on the customer side and on the service provider side.

When the customer needs a service, it sends a request to
all the service providers. These providers send their propo-
sals. Those are then analyzed by the customer to select the
best one. The customer informs the corresponding service
provider which generates private and public keys, and assi-
gns an adequate QoS to each behavior of the mobile agent.
The mobile agent moves then to the customer host.

123

272 S. Hacini et al.

Fig. 1 Mobile agent protection
protocol

We propose to use simultaneously the asymmetric and the
symmetric cryptographic methods and assume the existence
of the following couples of public and private keys:

– Agent owner (or service provider) keys: (Po, So)
– Host keys: (Ph , Sh)

The main steps of this protocol are (see Fig. 1):

1. The mobile agent starts interacting with the host in order
to obtain the needed information to generate the environ-
ment key (see Box 1).

2. The mobile agent encrypts the intermediary key K with
the service provider public key Po, signs it with the host
private key Sh and sends it with the signature to the ser-
vice provider (see Box2). Then, it calculates the environ-
ment key.

3. The service provider verifies the signature and deciphers
the received key (see Box 3.1). It analyses the key, com-
putes the trust value (see Sect. 4.3), selects the correspon-
ding QoS, encrypts it with the environment key (compu-
ted at the service provider side), signs it and sends it with
the signature to the costumer (see Box 3.2).

4. At the customer side, the mobile agent tries to decipher
the QoS with the environment key (see Box 4). In case
of success, it executes the requested service.

Further details are given in Sect. 4.

3.3 Mobile agent behavior model

The behavior of the mobile agent is related on the provided
service. The service proposed by the mobile agent must be
able to be deployed on various environments by taking into
account their level of security. Consequently, the objective
is of being able to adapt the QoS offered by the application
according to the variations of the security levels of the host.

These variations depend on confidential information held by
the visited host as well as availability of resources affecting
directly the fulfillment of the selected service.

The QoS selection is based on a preliminary phase repre-
sented by the estimation of the trustworthiness of the visited
host. Thus, the mobile agent behavior depends on the selected
category of QoS. It can:

1. Perform the requested service and leave the host (if the
host trustworthiness is high).

2. Perform a degraded service and leave the host (replace
the requested service by another which is less useful
because the trust value is not significant).

3. Leave the host without performing the service (if the host
trustworthiness is too low).

Our aim is to make complex the dynamic analysis of the
mobile agent behavior. In order to thwart dynamic analy-
sis, the mobile agent designer must arrange the code that
it will take very different execution paths on different runs.
Consequently, determining which basic blocks were always
invoked, and in which combinations, would require a great
effort.

Based on the service decomposition (the service is
decomposed into several tasks including dummy ones) and
obfuscation techniques [22,23], each QoS category can be
performed in different ways. This propriety provides the
mobile agent with the ability to have different reactions for
the same QoS. Therefore, this aptitude complicates its ana-
lysis since its behavior is unexpected.

Let E = {E1, E2,…, En} be a set of n abstract expres-
sions that are used to implement the different behaviors of
the mobile agent.

Let A = {A1, A2,…, Ap} be a set of p functional tasks
(including dummy ones) that are included in the different
executions. Each E j (j < n) is a calls sequence of a subset

123

TAMAP: a new trust-based approach 273

of A and can be viewed as a sequence of p bits (each bit
indicates if a specific task is included or not).

If we consider p tasks, we can have 2p-2 possible combina-
tions; We do not consider the case where no task is executed.
An abstract expression is associated to each combination and
shows a specific behavior. This propriety increases the num-
ber of mobile agent possible executions and thus complicates
its behavior analysis. The mobile agent executions vary from
a service to another and are related to the service degradation
degree and to the provided alternatives.

3.4 A secure environment

When an executor receives a mobile agent, the owner loses
all control over the agent’s code and data. The executor can
reverse-engineer the code, analyze the data, or modify either
one. If no direct attack is feasible, the executor can still expe-
riment with the agent by supplying it with arbitrary data to
observe its reactions and by resetting it to its initial state. The
executor could even do this with a copy of the agent on an
isolated platform. Thus, the owner has to trust the executor in
order to prevent its illegal use of these methods. For this rea-
son, the evaluation of the executor trustworthiness presents
a primordial stage in our approach.

A mobile agent trusts a host when it believes that it is
secure. Thus, it is important for mobile agents to be able
to identify their hosts in order to trust them (or to have an
opinion on their trustworthiness).

Control is required to establish trust and to enhance
security. Thus, if a mobile agent does not trust the host, it
uses, for example, observation to prevent or at least detect its
misbehavior. Moreover, if the host knows that it is observed,
it is more reliable.

Different definitions of trust have been proposed. The
commonly used in literature is from Gambetta [18] “…trust,
(or symmetrically, distrust) is a particular level of the subjec-
tive probability with which an agent will perform a particular
action, both before he can monitor such action (or indepen-
dently of his capacity to monitor it) and in a context in which
it affects his own action”.

Castelfranchi et al. in [10] claim that the richness of the
mental ingredients of trust cannot and should not be com-
pressed simply in the subjective probability estimated by the
actor for its decision. The question therefore is: why does
one need an explicit account of the mental ingredients of
trust?

We agree with Castelfranchi and state that host trustwor-
thiness relies on several parameters and malicious behaviors.
We use the definition proposed by Josang [27]: “trust is the
extent to which one party is willing to depend on somebody,
or something, in a given situation with a feeling of relative
security, even though negative consequences are possible”.
This definition is suitable for dynamic environment. In the

current context, the trust definition requires to answer the
following questions:

– How can the agent perceive its environment so that it can
emit a right opinion on the trust and the profile of this
host?

– How can various perceptions be aggregated to generate
the environment key?

– How can this key determine exactly the category of
customer?

– How can this key, in case of misbehavior, explain the
origin of the failure to avoid a reaction that would not be
adapted?

Section 4 describes the steps followed by the trust estima-
tion mechanism.

4 Trust estimation

The trust estimation requires the inventory of trust parame-
ters, their evaluation and the trust quantification. It enables a
selection of the action to be undertaken and which is presen-
ted, in our case, by the selected QoS.

The trust estimation remains a quite subjective task. It
is a result of a monitoring of (1) the target host by obser-
ving it, inspecting it and/or questioning it and (2) the mobile
agent reaction by performing the service, reducing it or do
not achieve it.

To evaluate trust, each mobile agent uses (see Fig. 2):

– Observation mechanism that captures all parameters apt
to contribute to the perception of the environment and to
inform about the host’s trust degree,

– Interaction mechanism that enables the mobile agent to
ask the host questions for which the agent owner already
knows the answer. In this case, trust could be based on
private information

Fig. 2 Trust acquisition mechanisms

123

274 S. Hacini et al.

– Inspection mechanism that allows examining the envi-
ronment in the search of particular information.

There are various techniques for observation and inspec-
tion. We refer, for example, to Rutkowska’s Red Pill method
[45] and more generally to Virtualization-based rootkit1 tech-
niques and the relevant detection issues (http://en.wikipedia.
org/wiki/Rootkit; http://3psilon.info/Les-rootkits.html).

The concept of trust is based on the parameters that inform
on the host trustworthiness. Based on the values of these
parameters, the trust is quantified.

This section shows the characteristics of parameters that
contribute to estimate trust, presents algorithms that define
the environment key generation as well as the trust quantifi-
cation and the selection of the most suitable QoS.

4.1 Trust parameters

The quantitative dimensions of trust are based on the ones of
its cognitive constituents [10]. The trust estimation is based
on the analysis of a set of parameters values which represent
a prerequisite to the required service execution. We assume
that the values of all these parameters could produce an envi-
ronment key. For a good protection of the mobile agent, the
environment key has to inform about the host trustworthi-
ness. Its analysis must highlight the causes of the obtained
result (trust value); particularly, when the trust degree is low.
So, the key should not be a simple value but an aggregation
of a set of significant values.

Thus, to determine the host trustworthiness, the following
parameters must be identified:

– Parameters that make an interaction trustworthy.
– Parameters that determine a level of trust of every

costumer.
– Parameters that determine a category of costumers to

which the host belongs.
– Software and hardware parameters that may affect per-

ception of trust and service fulfillment.
– Reputation (may not exist) of a visited host provided by

the agent’s owner or a third party and witch is related to
the history of the host’s transactions.

We note that the kinds of parameters in, for example,
the second and fourth points are different. The second point
expresses all parameters that are related to the privacy of the
host (e.g., password) while the fourth point shows parame-
ters that are associated to the host infrastructure and that are
not private. Thus, we distinguish between internal and exter-
nal trust. Internal trust specifies internal characteristics of the

1 A rootkit is a tool that is designed to hide itself and other processes,
data, and/or activity on a system.

trustee while external trust designates technical or environ-
mental obstacles against the fulfillment of the service. We
subdivide parameters into two sets:

– Internal parameters which define internal trust. They
include all information apt to authenticate the relation
existing between the customer and the service provider as
identity (name, organization, etc.), contracts (type, refe-
rence, service acronym, validity date, etc.), certificate,
private information (password, etc.), etc.

– External parameters which define external trust (circum-
stances, reputation, situation, environment, infrastructure,
etc.).

The composition of internal/external parameters produces
different trust estimations. When opting for the best reaction
it will adopt, the service provider must distinguish between
the two kinds of parameters (if the host is failing or diffident
this does not mean automatically that it is malicious). The
analysis of the generated environment key enables to make
a meticulous diagnostic of lack of trust.

Each parameter j has two attributes: its weight W j and its
importance I j . The weight expresses the parameter power
while the importance defines its impact in the final deci-
sion; especially when the trust value is low or not significant
(suspicion).

The trust parameters inventory and the definition of the
parameters attribute values are realized by the mobile agent
designer. They are related to the service security criteria.

4.2 Environment key generation

The present subsection emphasizes the different steps fol-
lowed by both the service provider and the mobile agent to
perform a requested service. It mainly gives details on the
environment key generation which represents the support of
the trust estimation mechanism (see Fig. 1). The environment
key generation task is based on the data collected during the
interaction between the mobile agent and the host.

As soon as the mobile agent arrives at the customer host,
it executes some actions which enable trust acquisition (see
Table 1).

We use, in the following algorithms, as capital letters the
operation that is performed (H, E , D, S and V for respectively
the hashing, the encryption, the decryption, the signature and
the verification), and as subscripts the name of the entity
which perform the operation (“a” for mobile agent and “h”
for service provider host).

In order to evaluate the customer trust degree, the ser-
vice provider must execute some actions (see Table 2). These
actions enable the customer trustworthiness estimation and
thus, the selection of the suitable service.

123

TAMAP: a new trust-based approach 275

Table 1 The mobile agent
execution Algorithm

A more detailed description of the main steps of these
algorithms is given in the appendix.

4.3 Trust quantification

The host trust estimation T is relative to parameters attributes
values and is calculated according to importance IJ of the
parameter J, of its weight WJ and the factor SJ . SJ has a
binary value. It corresponds to the result of the validation
test of the collected parameter j value.

T =
k∑

i=1

W j I j S j . (1)

The service provider has a database which includes for
each customer its own parameters values with their corres-
ponding hashing (see Table 3). A matching of the received
and existent hashing data is performed. It enables the attri-
bution of the value 1 or 0 to the factor S j of each parameter j
respectively in cases of matching or not matching. Then, the
trust T is estimated using the previously mentioned formula
(1).

The selection of the suitable QoS relies on the value of T.
The variations of this value are described by a granulation of

the interval [0, 100]. Table 4 gives an example of such gra-
nulation. Our trust estimation is based thus on intervals of
values and not on thresholds. This provides a greater flexibi-
lity of reaction. Indeed, rather than having rigid reactions as
it is the case in the trust models using thresholds, the reaction
here is adapted according to values belonging to a particular
interval. For example, if the trust value belongs to the good
interval (e.g., [71–100]) the customer is trusted. Three cases
occur:

1. The trust value tends to 71, QoS6 is selected
2. The trust value tends to 100, QoS8 is selected or
3. The trust value tends to middle of this interval, QoS7 is

selected.

The mobile agent can, after receiving the appropriate
QoSi, perform the selected service. On the other hand, if the
obtained trust value is considered to be low (e.g., [0–30]), it
is possible before selecting the adequate QoS, to look for the
exact cause of this failure. This is realized by seeking among
the parameters which had a factor S equal to zero.

The parameters are subdivided into sets (see Table 5):

1. Parameters with higher importance (3)

123

276 S. Hacini et al.

Table 2 The service provider
execution Algorithm

Table 3 Example of customer
records Parameter Parameter value Digest (SHA-1)

Service identifier Mobi-Scan 6654b57274e1bdfc2953324999cbaef0bb470be9

Acronym Esprit 7 bca3fbec4d267cacddeaa0dcbc091f72d3f32fd7

Validity date December 31th, 2007 de01cecfc4fc72d91128210329614afab1ff09ce

Table 4 Example of estimation intervals with their related feedback

Interval of trust estimation Feedback

QoS0

0–30 QoS1

QoS2

QoS3

31–70 QoS4

QoS5

QoS6

71–100 QoS7

QoS8

2. Parameters with medium importance (2)
3. Parameters with lower importance (1)

Given the importance of some parameters, they can deeply
influence the choice of the action to be undertaken and thus

Table 5 Example of values of parameters attributes

Parameter Weight Importance value Reaction in case
(3, 2, 1) of failure (relied

on the importance
of the parameter)

Identifier 20 3 QoS0

Acronym 10 2 QoS3

e-mail 5 1 QoS6

the selection of the adequate QoS. The values assigned to the
attributes (the weight and the importance) of each parameter
define its impact on the final decision (see Table 5).

Note that there is only one case which will generate the
execution of the complete service. It is the one where the
attacker knows all customer data (collected by interaction).
Furthermore, the data collected by inspection are also valid.

123

TAMAP: a new trust-based approach 277

We suppose too that this attacker has intercepted the customer
private key. This case seems very improbable.

5 Mobile agent architecture

In the proposed approach, the adaptation is statically desi-
gned and dynamically performed. This solution consists in
estimating, during the construction of the application, the dif-
ferent variations of the environment and defining the adap-
tation rules. Among the different techniques that enable the
realization of the adaptation, the reflexivity seems to be a
promising solution. It constitutes a support of the application
development and provides mechanisms enabling to express
treatments in extremely generic terms. The intrinsic proper-
ties of the reflexivity (introspection and intercession) give
the mobile agent the possibility to reason and to act on itself.
The proposed reflexive architecture highlights two concep-
tual levels:

A basic level

It contains the functional code and formulates the application
logical implementation as well as its semantics. It comprises
five components: an Interface, a Memory, a Library, a key
generator and a Manager. The interface allows communica-
tion with the host and permits data acquisition. These data
are used for the mobile agent behavior selection. Collected
data and execution trace are stored in a memory and the tasks
used by the various behaviors are in the library.

A meta-level

It contains the non-functional code and describes the adapta-
tion process.The latter is ensured by an Adaptor component.

5.1 Architecture components

The proposed mobile agent reflexive architecture (see Fig. 3)
contains the following components:

Interface

It manages the communication between the mobile agent and
its current environment. It comprises two sub-components:

A sensor: It is responsible for the environment perception
and the data acquisition. These data are useful for the host
trustworthiness estimation. Three types of acquisition can be
considered: the observation, the inspection and the interac-
tion. The type of acquisition is related to required data. For
example, the interaction mechanism is used for the acqui-
sition of the identity, the inspection mechanism is used to

research of a specific file and the observation mechanism
controls the number of times the customer tries to write a
password.

An actuator: it allows the execution of the sequence of
actions related to the selected behavior. These actions can be
a simple alarm, a modification task, a transmission/reception
message, a stop of the execution or/and a migration.

Library

It contains the tasks of the mobile agent code. The com-
positions of these tasks generate the different agent beha-
viors. The purpose is to offer more confidentiality and more
flexibility to the behavior. In order to vary the mobile agent
behavior, alternatives for some tasks are proposed. These
alternatives are mainly provided by the obfuscation algo-
rithms. Furthermore, some dummy tasks are used to compli-
cate the mobile agent behavior analysis and to increase the
security level. Various combinations of the tasks are supplied
by a set of abstract expressions used to implement the mobile
agent behaviors. The library comprises also all the security
tasks used by the protection protocol.

Let A = {A1, A2…Aq} be a set of tasks. The set A can be
subdivided on two subsets: F and S. F = {A1, A2,…, Ap} is
a set of functional tasks that corresponds to the application
and S = {Ap + 1,…, Aq} is a set of security tasks (e.g.,
cryptography, hashing, digital signature, etc.).

Memory

It contains the hashed collected data and the execution trace.
Both are signed by the host private key. They will be used, by
the service provider, to check the validity of collected data
and to confirm the execution of the selected behavior.

Key generator

Its role is the generation of the environment key. It allows the
safeguard of hashed data into the memory and their emission
to the service provider using the actuator component. It is
also used to decrypt the received QoS.

Manager

In addition of its management role, the manager determines
the actions to be performed by selecting the tasks stored
in the library. In order to increase the complexity of the
mobile agent behavior analysis, each selected task is rela-
ted to various abstract expressions. An abstract expression
is defined as a combination of useful and dummy tasks. For
instance, if the selected rule is R8 and (T0, T1) are dummy
tasks the combination could be (T0, task2.3), (T1, task2.3),

123

278 S. Hacini et al.

Fig. 3 The mobile agent
reflexive architecture

(task2.3, T0, T1), (T0, task2.3, T1) or (T1, task2.3, T0).
Moreover, the manager allows the use of the security tasks.

Adaptor

It applies the adaptive policy. It comprises a rules base and a
deliberator.

The rules base: It contains the execution rules. These rules
are described as follows: If <Condition> Then <Action>.
The left side of the rule comprises the selected QoS and
its right side specifies the corresponding task. The rules base
includes the behavioral rules (see Table 6) and rules of excep-
tions like if <Time of execution expired> then <notify and
leave>.

The deliberator: It is an execution engine. It uses the recei-
ved QoS and the rule base to choose the set of rules that can
be triggered. It then selects the most appropriate rules among
the selected ones. This selection determines the mobile agent
behavior. It uses the weight of the rules. The weight is ini-
tialized to zero and is then incremented each time the rule
is triggered along the way of the mobile agent. A random
number generator selects the suitable rules among the rules

Table 6 Example of behavioral rules at the initialization stage

Weight Rule

0 R0: if QoS0 then exec (task0.1)

0 R1: if QoS0 then exec (task0.2)

0 R2: if QoS1 then exec (task1.1)

0 R3: if QoS1 then exec (task1.2)

0 R4: if QoS1 then exec (task1.3)

0 R5: if QoS1 then exec (task1.4)

0 R6: if QoS2 then exec (task2.1)

0 R7: if QoS2 then exec (task2.2)

0 R8: if QoS2 then exec (task2.3)

0 R9: if QoS3 then exec (task3.1)

… …

0 …

which have the lower weight. The behavior history of the
mobile agent is related to the rules weights.

5.2 An overview of a mobile agent execution

As soon as the mobile agent arrives at the host, it starts the
environment key generation operation. During this step, the

123

TAMAP: a new trust-based approach 279

mobile agent collects data using the sensor component. The
key generator component applies the hashing, encryption and
digital signature operations to the collected data using the
corresponding tasks present in the library via the manager
component. It emits the result to the service provider and
saves a copy in the mobile agent memory. Then, it calculates
the environment key. After that, the mobile agent awaits the
arrival of the selected QoS from the service provider. As
soon as the message carrying the selected QoS arrives, the
mobile agent identifies it (checks the digital signature) and
uses the environment key to decrypt it. Then, the deliberator
utilizes the selected QoS and the rule base to select the set
of rules that can be triggered. Based on the random number
generator, the deliberator selects the suitable rules among
the rules which have the lower weight. Finally, The manager
selects the chosen tasks from the library and the actuator
allows the execution of the sequence of actions related to the
selected behavior.The latter executes actions and delivers a
report of the execution to the manager. This report is saved
in the mobile agent memory.

With an aim of increasing the flexibility of the system, a set
of exceptions is defined. If any problem occurs during one of
the execution steps, the manager notes the non-progression
for a determined duration. Then, it asks the deliberator to
check the set of the exceptions for a possible re-establishment.
If the whole of the exceptions does not correspond to the pro-
blem mentioned, it stops the execution immediately, notifies

– The selection of rules that match the requested Qos:

for(int i=0; i<ruleBaseEng.getRuleBaseSize();i++){
if(ruleBaseEng.getRule(i).getQosValue()==qosValue){
matchedQosValueList.add(new
AgMatchedQos(ruleBaseEng.getRule(i).getWeight(),i)); } }

– The search of the minimum rule weight:

minWeight=((AgMatchedQos)matchedQosValueList.getFirst()
).getRuleWeight(); for(int i=0;i<matchedQosValueList.size();i++)
{if(((AgMatchedQos)matchedQosValueList.get(i)).getRuleWeight()
<minWeight)
minWeight=((AgMatchedQos)matchedQosValueList.get(i)
).getRuleWeight();
}

– The collection of rules that match the minimum weight:

for(int i=0;i<matchedQosValueList.size();i++){
if(((AgMatchedQos)matchedQosValueList.get(i)).getRuleWeight()
==minWeight)matchedWeightList.add((AgMatchedQos)
matchedQosValueList.get(i));
}

– The selection of the rule to be triggered

selectedRuleIndex = ((AgMatchedQos)matchedWeightList.get
(safeRandom(matchedWeightList.size()))).getRuleIndex();
selectedRule= ruleBaseEng.getRule(selectedRuleIndex);

the problem and leaves the current host to migrate to the next
host or to the host of origin.

6 Some implementation aspects

We built a prototype to demonstrate the possibility of TAMAP
mobile agents. Java (JDK 1.5) was used as the language for
the mobile agent development due to the fact that it provides
cross-platform portability.

Java enables also dynamic extension possibility through
the usage of Class-Loader. This means that Java can dynami-
cally load and use classes at runtime [20,51]. The Java pro-
gram does not need to know all classes at compile time. This
ability is very useful for the dynamical load of the library
tasks. Furthermore, Java has a rich library that comprises
several security functions.

We present in this subsection the adaptor which is the most
important part of the mobile agent code. The adaptor contains
the deliberator and the rule base (see Fig. 3). As shown pre-
viously the deliberator is an execution engine rather than an
inference engine. This choice is based on the fact that the exe-
cution engine offers a faster execution and the weight of the
mobile agent is more reduced. The deliberator is represented
by the AgRunEngine class and the rule base corresponds to
the AgRuleBase class (see Fig. 4).

The most important parts of the execution engine code are:

123

280 S. Hacini et al.

Fig. 4 The adaptor class diagram

The AgRuleBase class has several methods (see Fig. 4).
An example of these methods is the updateRuleWeight(). It
updates the weight of the selected rule:

public void updateRuleWeight(int index){ updatedRule=(AgRule)
ruleBase.get(index);
updatedRule.setWeight(updatedRule.getWeight()+1); }

7 Conclusion

A malicious host can deduce mobile agent execution strategy
by analyzing its behavior. To prevent this kind of attacks, the
proposed approach intervenes at the three levels: the protec-
tion protocol, the trust estimation mechanism and the dyna-
mic adaptation process.

The protection protocol is primarily based on the use of the
environment key. The latter is protected since it is calculated
at the service provider as well as at the customer side. It is
used as a symmetric key and enables the protection of the
transmitted data.

We introduced a model to enable mobile agents to
estimate the host trustworthiness. Moreover, we proposed a

technique which provides a reaction based on realistic para-
meters values. This trust estimation mechanism relies on the
contents of the intermediary key (obtained at the preliminary

phase of the construction of the environment key). Compa-
red to the current models of trust, our mechanism provides
several advantages. The mechanism does not require the esti-
mation of other agent’s trustworthiness and it simplifies many
complex and costly infrastructures for risk assessment like
reputation databases. The major advantage remains in the fact
that our estimation of trust is based on concrete values. Thus,
in case of an untrusted host deduction, it is possible to locate
the exact source of the obtained result. This ability is very
important since it enables to avoid an inopportune reaction.
Moreover, this model is flexible: the mobile agent owner can
modify parameters, trust estimation intervals relying on the

123

TAMAP: a new trust-based approach 281

importance of the service, its time limitation (if it is or not
out of date) and the risk incurred (or the damage resulted).
However, the proposed trust model requests a great aptitude
in the inventory of the trust parameters as well as on the
estimation of their attributes values.

The dynamic adaptation process allows the adaptation of
the mobile agent behavior based on the host trustworthiness,
the mobile agent behavior history and the provided QoS. It is
supported by the mobile agent reflexive architecture which
offers the mobile agent the propriety of flexibility allowing
the modification of its behavior. Furthermore, the dynamic
adaptation process is based on the degree of degradation of
the service and on its ability to propose various alternatives
to the same QoS.

The dynamic adaptation process provides some interests
since it offers the mobile agent the ability to react with an
unexpected behavior. This aptitude prevents the visited host

Customer side

1. Collect the data :
Service identifier = Mobi-Scan
Acronym =Esprit 7
Validity date = December 31, 2007

2. Apply SHA-1 to each data :
Service identifier =6654b57274e1bdfc2953324999cbaef0bb470be9
Acronym =bca3fbec4d267cacddeaa0dcbc091f72d3f32fd7
Validity date =de01cecfc4fc72d91128210329614afab1ff09ce

3. Concatenate the three digests:
M=6654b57274e1bdfc2953324999cbaef0bb470be9bca3fbec4d267cacddeaa0dcbc
091f72d3f32fd7de01cecfc4fc72d91128210329614afab1ff09ce

4. Encrypt M using the RSA (key size = 1,024) public key
encryption scheme. The obtained result is:
EM=69710f7d78369be7e6823c00be39174cd1eeb4c8c091ddb616380d02d163ba2
9a046a68d430fba45bb30b751a81f697d6e254613559f0ccc555e8eea6bfa3e75bb48
f96b1771a5ac07444497290460b22b98b97c64b61d16b5c7ec95e56c9b5d627f7b2
53b50448d35ed1fa592cb0d5778fbd8cda2643385ecf5aec7e7f4c764
We note that the size of EM is 256 characters.

5. Sign EM using DSA algorithm :
SM=302c021451b1f4af3cd47c252ba00d184176fab9c7d5cfba0214010a4360324f
91b5fcbc791a80d9ab7bff73fc8d

6. Send EM and SM to the service provider

7. Apply hashing to M :
D = H(M) =6ec45dd290571c95b03e09037fa628fd9872a7ea

8. Apply D ⊕ id (where id is for example ’Ag543hdmk’):
Ke = D⊕ id =2fa368e6a33f78f8db7f6e364b954099f519e68d

to deduce the followed strategy. Consequently, any behavior
analysis attempt becomes difficult and inefficient.

Trust constitutes a method to build host behavior-aware
agent and we are now considering the fact that the agent
itself could take the initiative to react after the host trust
estimation. This can be realized by a dynamic behavioral
adaptation. The mobile agent will be able to estimate the host
trustworthiness and to modify the trust estimation intervals
according to the environment security level. Thus, it will be
able to decide which QoS to adopt. This would have the
advantage of increasing the mobile agent autonomy in our
model.

Appendix

This appendix points out the principal steps of algorithms
presented in Tables 1 and 2 (see Sect. 4.2).

123

282 S. Hacini et al.

The remaining steps correspond to the verification of SQ
and the decryption of EQ using the environment key.

Service provider side

1. Receive EM and SM :
EM=69710f7d78369be7e6823c00be39174cd1eeb4c8c091ddb616380d02d163ba2
9a046a68d430fba45bb30b751a81f697d6e254613559f0ccc555e8eea6bfa3e75bb48
f96b1771a5ac07444497290460b22b98b97c64b61d16b5c7ec95e56c9b5d627f7b2
53b50448d35ed1fa592cb0d5778fbd8cda2643385ecf5aec7e7f4c764
SM=302c021451b1f4af3cd47c252ba00d184176fab9c7d5cfba0214010a4360324f
91b5fcbc791a80d9ab7bff73fc8d

2. Verify SM
3. Decrypt EM and obtain :

M=6654b57274e1bdfc2953324999cbaef0bb470be9bca3fbec4d267cacddeaa0dcbc
091f72d3f32fd7de01cecfc4fc72d91128210329614afab1ff09ce

4. Based on the number of trust parameters, the used hashing function (e.g., the digest size is 40 characters) and the
position of each parameter, it is possible to obtain the different digests:
Position1:
Service identifier = 6654b57274e1bdfc2953324999cbaef0bb470be9
Position2:
Acronym = bca3fbec4d267cacddeaa0dcbc091f72d3f32fd7
Position3:
Validity date = de01cecfc4fc72d91128210329614afab1ff09ce

The remaining steps enable the estimation of trust degree,
the selection of the appropriate QoS and the computation of
the environment key. The latter is recomputed in the same
way that on the customer side and will be used to encrypt the
selected QoS.

References

1. Abdul-Rahman, A., Hailes, S.: Using recommendations for mana-
ging trust in distributed systems. In: Proceedings of IEEE Malay-
sia International Conference on Communication’97 (MICC’97),
Kuala Lumpur, Malaysia (1997)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A.,
Vadhan, S., Yang, K.: On the (Im)possibility of obfuscating pro-
grams. Advances in cryptology. In: Proceedings of Crypto’2001,
Lecture Notes in Computer Science, Vol. 2139, pp. 1–18 (2001)

3. Beaucamps, P., Filiol, E.: On the possibility of practically obfus-
cating program—towards a unified perspective of code protec-
tion. WTCV’06 Special Issue, G. Boufante, I., Marion, J.Y. (eds)
J. Comput.Virol. 3(1) (2007)

4. Beimel, A., Burmester, M.: Computing functions of a shared
secret. SIAM J. Discrete Math. 13(3), 324–345 (2000)

5. Bellavista, P., Corradi, A., Frederici C., Montanari R., Tibaldi D.:
Security for mobile agents: issues and challenges. In: Mahgoub,
I., Ilyas, M. (eds) The Book Handbook of Mobile Computing.
CRC, Boca Raton (2004)

6. Bierman, E., Cloete, E.: Classification of malicious host threats
in mobile agent computing. In: Proceedings of SACICSIT2002,
pp. 141–148 (2002)

7. Borselius, N.: Mobile agent security. Electron. I Commun. Eng.
J. IEEE Lond. 14(5), 211–218 (2002)

8. Braynov, S., Sandhol, T.: Trust revelation in multiagent interac-
tion. In: Proceedings of CHI’02, Workshop on the Philosophy and
Design of Socially Adept Technologies, Minneapolis (2002)

9. Cahill, V. et al.: Using trust for secure collaboration in uncertain
environment. IEEE Pervasive Comput. 2(3), 52–61 (2003)

10. Castelfranchi, C., Falcone, R.: Trust is much more than sub-
jective probability: mental components and sources of trust. In:
The 32nd Hawaii International Conference on System Sciences—
Mini-Track on Software Agents, Maui, Hawaii (2000)

11. Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., Tsudik,
G.: Itinerant agents for mobile computing. Technical Report, IBM
T.J. Watson Research Center, NY (1995)

12. D’Anna, L., Matt, B., Reisse, A., Van Vleck, T., Schwab, S.,
LeBlanc, P.: Self-protecting mobile agents obfuscation report.
Network Associates Laboratories Report (2003)

13. Dimitrakos, T.: A service-oriented trust management framework.
In: Falcone, R., Barber, S., Korba, L., Singh, M. (eds) Trust, repu-
tation, and security: theories and practice, LNAI 2631. Springer,
Heidelberg, pp. 53–72 (2003)

14. Farmer, W.M., Guttman, J.D., Swarup, V.: Security for mobile
agents: authentication and state appraisal. In: Proceedings of
the European Symposium on Research in Computer Security
(ESORICS), pp. 118–130 (1996)

15. Filiol, E.: Strong cryptography armoured computer viruses for-
bidding code analysis: the bradley virus. In: Proceedings of the
14th EICAR Conference (2005)

16. Filiol, E.: Techniques virales avancees (chapter 8), collections
IRIS. Springer, Janvier (2007)

17. Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis. EICAR 2006 Special Issue, Broucek I, V., Turnee,
P. (eds) J. Comput. Virol. 2(1), (2006)

18. Gambetta, D.: Can we Trust Trust? Trust: Making and Breaking
Cooperative Relations. In: Gambetta, D. (ed) Basil Blackwell,
Oxford (1990)

123

TAMAP: a new trust-based approach 283

19. Grandison, T., Sloman, M.: A survey of trust in internet applica-
tions. IEEE Commun. Surv. Tutor., Fourth Quarter (2000)

20. Gong, L.: Secure java class loading. IEEE Internet Comput. 56–61
(1998)

21. Guessoum, Z., Ziane, M., Faci, N.: Monitoring and organizational-
level adaptation of multi-agent systems. In: AAMAS’04. ACM,
New York, pp. 514–522 (2004)

22. Hacini, S., Guessoum, Z., Boufaida, Z: Using a trust-based key to
protect mobile agent code. In: Transactions on Engineering, Com-
puting and Technology, vol. 16, ISSN 1305-5313, World Enfor-
matika Society, CCIS’2006, Venice, Italy, pp. 326–332 (2006)

23. Hacini, S.: Using adaptability to protect mobile agents code. In:
IEEE International Conference on Information Technology ITCC
2005, Las Vegas, USA, pp. 49–53 (2005)

24. Herzberg, A., Pinter, S.S.: Public Protection of Software.
Advances in Cryptology: Crypto 85, pp. 158–179. Springer,
Berlin (1985)

25. Hohl, F.: Time limited blackbox security: protecting mobile agents
from malicious hosts. In: Vigna, G. (ed) Mobile agents and secu-
rity. Lecture Notes in Computer Science, Vol. 1419, pp. 52–59.
Springer, Heidelberg (1998)

26. Jansen, W., Karygiannis, T.: Mobile agent security. NIST Special
Publication 800-19, National Institute of Standard and Technology
(2000)

27. Josang, A.: Trust-based decision making for electronic transac-
tions. In: The fourth Nordic Workshop on Secure ITSystems
(NORDSEC’99), Stockholm University Report 99-005, Stock-
holm (1999)

28. Josang, A.: A Logic for Uncertain Probabilities. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst. 9(3), 279–311 (2001)

29. Josang, A., Lo Presti, S.: Analyzing the relationship between risk
and trust. In: Dimitrakos, T. (ed) The Proceedings of the Second
International Conference on Trust Management, Oxford (2004)

30. Karnik, N.: Security in mobile agents systems. PhD thesis,
Department of Computer Sciences and Engineering, University
of Minnesota, Minneapolis, USA (1998)

31. De Lara, E., Wallach, D.S., Zwaenepoel, W.: Puppeteer: com-
ponent based adaptation for mobile computing. In: Proceedings
of the Third USENIX Symposium on Internet Technologies and
Systems, pp. 159–170 (2001)

32. Lin, C., Varadharajan V.: Modelling and evaluating trust relation-
ships in mobile agent based systems. In: Proceedings of First
International Conference on Applied Cryptography and Net-
work Security (ACNS03), Lecture Notes in Computer Science,
Vol. 2846, pp. 176–190. Springer, Kunming (2003)

33. Lin, C., Varadharajan V., Wang Y., Mu Y.: On the design of a
new trust model for mobile agent security. In: The 1st Internatio-
nal Conference on Trust and Privacy in Digital Business (Trust-
Bus04), Lecture Notes in Computer Science, Vol. 3184, pp. 60–69.
Springer, Zaragoza (2004)

34. Lin, C., Varadharajan, V., Wang, Y., Pruthi, V.: Trust enhanced
security for mobile agents. Manuscript (2005)

35. Manchala, D.W.: Trust metrics, models and protocols for electro-
nic commerce transactions. In: The 18th International Conference
on Distributed Computing Systems (1998)

36. Manchala, D.W.: E-commerce trust metrics and models. IEEE
Internet Comput. 36–44 (2000)

37. Mu, Y., Lin, C., Varadharajan, V., Wang, Y.: On the design of a
new trust model for mobile agent security, trust and privacy in
digital business. Lecture Notes in Computer Science, Vol. 3184,
pp. 60–69. Springer, Berlin (2004)

38. Necula, G.C., Lee, P.: Untrusted agents using proof-carring
code. Lecture Notes in Computer Science, Vol. 1419, Springer,
Heidelberg (1998)

39. Quin, T.: Cherubim agent based dynamic security architecture.
Technical Report University of Illinois at Urbana-Champaign
(1998)

40. Reiser, H.: Security requirements for management systems using
mobile agents. In: Proceeding of the Fifth IEEE Symposium on
Computers and Communications: ISCC 2000, Antibes, France,
pp. 160–165 (2000)

41. Riordan, J., Schneier, B.: Environment key generation towards
clueless agents. Lect. Notes Comput. Sci. 1419, 15–24 (1998)

42. Roth, V.: Secure recording of itineraries through cooperating
agents. In: Proceedings of the ECOOP Workshop on Distri-
buted Object Security and fourth Workshop on Mobile Object
Systems: Secure Internet Mobile Computations, INRIA, France,
pp. 147–154 (1998)

43. Roth, V.: Mutual protection of cooperating agents. In: Vitek, J.,
Jensen, C. (eds) Secure Internet Programming: Security Issues for
Mobile and Distributed Objects. Springer, Heidelberg (1999)

44. Rouvrais, S.: Utilisation d’Agents Mobiles pour la Construc-
tion de Services Distribues. These de doctorat de l’universite de
Rennel, France (2002)

45. Rutkowska, J.: Red pill... or how to detect VMM using (almost)
one CPU instruction, 2006. http://invisiblethings.org/papers/
redpill.html

46. Sander, T., Tschudin, C.: Toward mobile cryptography. IEEE
Symposium Security and Privacy, IEEE Computer Soc. Press, Los
Alamitos, pp. 215–224 (1998)

47. Sander, T., Tschudin, C.: Protecting mobile agent against mali-
cious hosts. In: Vigna, G. (ed) Mobile Agents and Security, Lec-
ture Notes in Computer Science, Vol. 1419, pp. 44–60. Springer,
Berlin (1998)

48. Smith, S.W., Austel, V.: Trusting trusted hardware: towards a for-
mal model for programmable secure processors. In: The Third
USENIX Workshop on Electronic Commerce (1998)

49. Tan, H.K., Moreau, L.: Trust relationships in a mobile agent sys-
tem. In: Picco, G.P. (ed) Fifth IEEE International Conference on
Mobile Agents, Lecture Notes in Computer Science, vol. 2240.
Springer, Atlanta (2001)

50. Vigna, G.: Mobile Code Security. Lecture Notes in Computer
Science, Vol. 1419. Springer, Berlin (1998)

51. Wang, T., Guan, S., Khoon Chan, T.: Integrity protection for
Code-On-Demand Mobile Agents in E-Commerce. J. Syst.
Softw. 60, 211–221 (2000)

52. Wilhelm, U.G., Staamann, S.M., Buttyan, L.: A pessimistic
approach to trust in mobile agent platforms. IEEE Internet Com-
put. 45, ISSN: 1089–7801, pp. 40–48 (2000)

53. Wilhelm, U.G., Staamann, S., Buttyan, L.: On the problem of trust
in mobile agent systems. In: IEEE Symposium on Network and
Distributed System Security, San Diego (1998)

54. Yahalom, R., Klein, B., Beth, T.: Trust relationships in secure
systems—a distributed authentication perspective. In: The Pro-
ceedings of IEEE Conference on Research in Security and Privacy
(1993)

55. Yee, B., Tygar, D.: Secure coprocessors in electronic commerce
applications. In: The Proceeding of First Usenix Workshop on
Electronic Commerce, Usenix Assoc., Berkeley, pp. 155–170
(1995)

123

	TAMAP: a new trust-based approach for mobile agent protection
	Abstract
	Introduction
	Related work
	Agent code protection
	Trust estimation
	The TAMAP principles
	A simple example
	Protection protocol
	Mobile agent behavior model
	A secure environment
	Trust estimation
	Trust parameters
	Environment key generation
	Trust quantification
	Mobile agent architecture
	Architecture components
	An overview of a mobile agent execution
	Some implementation aspects
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

