
Attacking Systems

A fter breaking into a system, attackers usually in-
stall rootkits to create secret backdoors and cover
their tracks. Unlike the name implies, rootkits
don’t provide root access. Instead, they arm at-

tackers with stealth on already compromised systems.
Stealthy operations hide processes, files, and connections
that let an attacker sustain long-term access without alert-
ing system administrators. (See the “Rootkit 101” sidebar
for more details on rootkits.)

Fortunately, most rootkits suffer from a lack of covert-
ness and secrecy within their binaries. This lets
administrators with access to the binary, or kernel, memory,
analyze it for suspicious string and symbol characteristics.
They can extract the strings and symbols and determine
what attackers are doing to their systems. Unfortunately, at-
tackers can avoid analysis by using code-obfuscation tech-
niques that make it difficult for system administrators to
detect and analyze kernel rootkits. Merely looking at sym-
bol-table and text-segment information, which contains
function names, variables, and strings contained in a pro-
gram, provides valuable insight into rootkits (and even non-
malicious programs) that do not employ obfuscation. In this
article, we show how software developers can use
obfuscation techniques to fight attackers who reverse-
engineer or illegally distribute commercial-software.

Obfuscation strategy
Obfuscation deliberately transforms software into an
identically functioning—but purposefully unread-
able—form, implemented in a high-level programming
language at the machine-instruction level, or, to some
extent, in the compiled binary. Obfuscation’s only re-
quirement is that its generated code be functionally

equivalent to its
parent. As an ex-
ample, we could obfuscate the

printk(“No strings attached”)

call to become

NAME((char *)decode(“\x59\x78\x37\x64\

x63\x65\x7e\x79\x70\x64\x37\x76\x63\x6

3\x76\x74\x7f\x72\x73\x1d\x17”)),

a nondescriptive function pointer that does on-the-fly
interpretation of XOR’d text. XOR is a binary operator
used in this example to flip bits in plaintext to create ci-
pher text. While real encryption algorithms use the
XOR operator as part of their calculations, a single-
character XOR itself is not considered to be “strong” en-
cryption without the use of nonrepeatable keys. To better
protect sensitive data, the decode function in this case
could be replaced with a more robust encryption/
decryption algorithm such as AES (www.esat.kuleuven.
ac.be/~rijmen/rijndael) or a one-time XOR pad.

Symbols and strings
Rootkit kernel modules—as well as legitimate program
modules—leave fingerprints (on the disk drive and in
memory) of the symbols and strings that they use. A sym-
bol is a pointer to a variable or a function either in or ex-
ternal to a program. A string is a snippet of ASCII plain-
text found in code between quotes. Whenever you
define or use a variable or a function, you define a sym-
bol. Whenever you place any data within quotes, such as

SANDRA RING

AND ERIC COLE

The Sytex
Group

Taking a Lesson
from Stealthy Rootkits

38 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/04/$20.00 © 2004 IEEE � IEEE SECURITY & PRIVACY

Attackers use rootkits and obfuscation techniques to hide

while covertly extracting information from commercial

applications. The authors describe how developers can use

similar obfuscation approaches to build more agile, less-

vulnerable software.

Attacking Systems

assigning a variable to “my string” or printing “hello
world,” you create a string. Figure 1 illustrates the differ-
ences between strings, local symbols, and global symbols
found in a kernel rootkit’s binary.

In this example, the rootkit is implemented as a load-
able kernel module (LKM), which means that this infor-
mation remains present in memory once the module
loads. This same kind of information exists in the binaries
and memory of legitimate modules that valid users
started. Attackers can leverage this information to reverse
engineer or modify legitimate commercial or privately
developed modules with relative ease when these sensi-

tive strings and symbols aren’t protected from sight.
Development and debugging tools, such as hexedit (a

hexadecimal file viewer and editor; http://merd.
sourceforge.net/pixel/hexedit.html), GDB (a GNU
source-level debugger for C, C++ and other languages;
www.gnu.org/directory/devel/debug/gdb.html), and
Binutils (a GNU collection of binary utilities, http://
sources.redhat.com/binutils/), can help gather symbol
table information.

How much obfuscation?
As with any computer security-related technology, the

www.computer.org/security/ � IEEE SECURITY & PRIVACY 39

Arootkit is a set of software tools that lets an attacker hide

processes, files, and network connections. There are two

popular categories: user level and kernel level.

User-level rootkits sometimes are called Trojans because they

operate by placing a Trojan horse within applications such as ps

(reports process status), ls (lists directory contents), and netstat

(prints network connections) on an exploited computer’s hard

drive. Popular examples of user- or application-level rootkits

include Torn and Lrk5 (www.antiserver.it/backdoor-rootkit).

Programs such as Tripwire (www.tripwire.com) can detect these

rootkits because they operate by physically replacing or modifying

files on the system’s hard drive.

Kernel-level rootkits have identical capabilities, but they implant

their functionality directly into a running kernel instead of cor-

rupting disk files. Many robust and popular rootkit designs are

implemented within a kernel as loadable kernel modules (LKMs;

Solaris LKM rootkit, www.thc.org/papers/slkm-1.0.html). These

programs inject themselves into memory via /dev/kmem1 or

through kernel and module static patching.2,3 Kernel rootkits are

more effective than user rootkits because they can affect the

behavior of programs such as ps, ls, and netstat by corrupting

the underlying kernel functions themselves. The applications

operate correctly, but the data that they receive from the kernel

has been corrupted to hide the attacker’s presence. Both rootkits’

behavior is identical, but kernel rootkits are more difficult to

detect, which makes them more desirable to attackers.

Most rootkits are wide open to forensics analysis and reverse

engineering. Each binary (especially LKMs because of their reliance

on external symbols and functions) tells a story for any forensics

novice who can execute more /proc/ksyms or strings –a

rootkit.o on a captured rootkit. Unlike applications that can be

coded and compiled to be completely autonomous, sophisticated

kernel modules must reference functions and variables within the

kernel; there is no such thing as static compilation for modules

loaded into the kernel. In this case, the shared library required for

static compilation is the kernel itself. This means that without being

recompiled into the kernel, the rootkit’s binary doesn’t contain

every function and variable that it will need to execute.

In Linux and Solaris, the executable and linkable format (ELF;

http://x86.ddj.com/ftp/manuals/tools/elf.pdf) symbol table for

kernel modules contains function names, their relative addresses,

and function and variable names outside the code (presumably

within the kernel) that are marked as undefined. When the module

loads into memory and links into the kernel, the undefined symbols

resolve and can then be called from within the program. The

linker/loader application for each operating system is responsible

for querying the symbol table of the kernel to do this resolution. On

Linux, this occurs when insmod calls the query_module system

call for each undefined reference. The return value is placed within

the symbol table of the module. Once all of the undefined ref-

erences have been resolved, the module is able to function as if it

had been compiled directly into the kernel. Because of this nec-

essary symbol resolution process, variable and function names

within the module binary must remain until the module is linked

and loaded into memory. Therefore, the concept of strip (a GNU

utility in Binutils, a collection of binary tools, which discards

symbols from object files; www.gnu.org) to remove all symbols,

doesn’t exist (or rather it does exist, but your program will cease to

function if you use it). If you strip the external symbol names from

the binary prior to resolution, the program won’t know the ad-

dresses where the variable or functions reside. However, we will

demonstrate techniques that developers can use to remove these

strings and symbols without preventing symbol resolution.

For more details on rootkit operation, see Exploiting Software:

How to Break Code.4

References

1. S. Cesare, “Runtime Kernel Kmem Patching,” Nov. 1998; http://vx.netlux.

org/lib/vsc07.html.

2. Jbtzhm, “Static Kernel Patching,” Phrack, vol. 0x0b, no. 0x3c, 2002; www.

phrack.org/phrack/60/p60-0x08.txt.

3. Truff, “Infecting Loadable Kernel Modules,” Phrack, vol. 0x0b, no. 0x3d,

2003; www.phrack.org/phrack/61/p61-0x0a_Infecting_Loadable_Kernel

_Modules.txt.

4. G. Hoglund and G. McGraw, Exploiting Software: How to Break Code,

Addison-Wesley, 2004.

Rootkit 101

Attacking Systems

challenge is to strike a balance between usability and
security. We easily can obfuscate software to the point

of uselessness by increasing its complexity until the ef-
ficiency and performance measurably degrade. While
other more CPU-intensive methods exist, we limit
discussion of obfuscation in this article to the relatively
efficient removal of strings and symbols within a bi-
nary. Techniques we’ll demonstrate include removing
all ASCII plaintext strings, renaming local symbols,
and resolving dynamic symbols for external variables
and functions.

The end result is a binary that contains no readable
strings and only the symbols necessary to populate an in-
ternal symbol table with their true functionalities. Be-
cause these techniques are limited to strings and symbols
and don’t introduce additional false execution paths,
performance impact is minimal. In addition, these tech-
niques are relatively simple to implement, requiring little
overhead to integrate into most efforts. They might not
prevent a fanatical attacker from reverse engineering
software, but they will dramatically raise the bar of com-
plexity and reduce the likelihood that less-dedicated at-
tackers will succeed.

ASCII plaintext
string-removal technique
Generally, there are two separate circumstances in which
strings are present in binaries. The first occurs when a
string is directly assigned to a variable, such as in the stor-
age of the files and ports illustrated in Figure 1. We usually
find these in two forms:

#define SECRET_FILE “/tmp/ls”

or

char secret_file[] = “/tmp/ls”;.

Similarly, we might find strings embedded within func-
tions, such as

if (strstr(file,”/tmp/ls”) == 0).

In this case, the string never gets assigned to a variable but
it’s still present in the binary.

The easiest method to remove ASCII strings from a
binary is to encrypt or encode them. A simple character-
by-character XOR can obfuscate the strings to make
them unreadable:

char secret_file[] = “\x38\x63\x7a\x67\

x38\x7b\x64”;

and

if (strstr(file,(char *)decode(“\x38\

x63\x7a\x67\x38\x7b\x64”,23,0,7)) == 0).

40 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

exp$strings -a adore.o

/tmp/ls
:ssh
:22
mypassword

ASCII strings

hide_process
_getdents
n_getdents
unhide_process

Local symbols

kmalloc_R93d4cfe6
iget4_R8e95a35e
getname_R7c60d66e
fput_re7c43861

External symbols

Figure 1. A rootkit’s fingerprints. This sampling from a kernel rootkit
identifies the location of a hidden file (/tmp/ls), pattern of hidden
ports (:ssh and :22), password of the rootkit (mypassword), names
of local functions (hide_process, and so on), and names of called
kernel functions (kmalloc, and so on).

Figure 2. A Perl script. It uses the nm symbol table display tool to
determine which symbols are local and, subsequently, to build a list
of #define replacement declarations.

#!/usr/bin/perl

$BASE = “OxO”;

$jump = 0;

open(DEFINES, ‘>>./defines.h’);

foreach $file (@ARGV) {

open(SYMBOLS, “nm -p $file |”);

$date = `date`;

print DEFINES “// Automagically generated by

defsym.pl \n”;

print DEFINES “// $file $date”;

while(<SYMBOLS>) {

($value,$type,$symbol) = split(/[\t]+/);

if (($type eq “t”) && !

($symbol=~/__(.*)/)) {

chop($symbol);

$newsymbol = $BASE.$jump++;

print “Replacing local symbol $symbol with

$newsymbol\n”;

print DEFINES “#define $symbol

$newsymbol\n”;

}

}

print DEFINES “\n\n”;

close(SYMBOLS);

}

Attacking Systems

The first example is a standard character-string assign-
ment to the encoded equivalent. The second changes the
string into a function pointer that returns the decoded
string as its result. The user observes no difference func-
tionally, but the binary is more secure because it reduces
the amount of sensitive information that’s available. The
earlier example uses the one-byte key 0x23 across the en-
tire string. While not considered strong in its present
state, apparent in repetitive cipher text indicating the lo-
cation of “/” earlier, it could be strengthened by increas-
ing the key length to prevent repeatable values or by
adopting a more robust algorithm.

Protecting local symbols
Local symbols refer to the items that are physically lo-
cated within the kernel module (that is, the
hide_process function in Figure 1). In general, local
symbols aren’t necessary within a binary because relative
addressing can reference them. Their addresses are
known and, unlike external references, no resolution is
necessary. You can minimize the number of local sym-
bols by avoiding global declarations and declaring as
many inline functions as possible. You can rename re-
maining symbols using manual or automated #define
replacement. For example, you could replace the
hide_process symbol in Figure 1 with

#define hide_process “ABC”.

ABC will replace the hide_process symbol every-
where it occurs within the binary. The beauty of a #de-
fine is that you don’t have to modify any source code, so
developers still can read it. Figure 2 contains a Perl script
that generates a list of #define replacements based on the
nm symbol-table display tool’s output. (The nm tool is a
GNU utility that displays symbols in object files; it’s part
of the Binutils package.)

Using nm, Figure 2’s script categorizes an object’s
symbols as local or external. The script generates a
replacement #define for each local symbol. Then, the
program compiles a second time to utilize the new
#define declarations. The process removes any refer-
ences to the original local symbol names in the binary.

Resolving external symbols
The primary goal of eliminating external symbols from a
binary is to remove references to functions that might be
considered alerting or suggestive of the techniques em-
ployed within the module. External symbols are variables
and functions not present in the binary but which are re-
quired for it to function properly. For example, an LKM
might use printkbut the function that implements it re-
sides elsewhere in the kernel. LKMs aren’t autonomous
though; they must interact with the kernel. Figure 3 shows
two paths that source code can use to reach the kernel.

Both cases start by compiling the source into an object
file identified by a .o file extension. Object code is a bi-
nary version of the source code and must be linked in
with other object files. For LKMs, it goes directly from
the object file format into the kernel using specially de-
signed linker–loader applications such as insmod (a Linux
utility for inserting modules into the kernel; www.netad-
mintools.com/html/insmod.man.html) and modload, a
similar utility for Solaris (http://docs.sun.com). These
applications allocate memory for the module and link the
module into the kernel.

The alternate path is to follow the traditional step of
linking against runtime libraries, essentially what happens
when you recompile a kernel. Because LKMs are more
popular and easier to implement than direct-injection,
most rootkit code follows the first path. Both methods are
functionally equivalent.

One approach references functions by addresses rather
than names. A classic example of this address-to-name
correspondence list is in Linux’s /boot/System.map
file. Although most users don’t often do it, recompiling
the kernel generates a new copy of it. Figure 4 shows an
example of this file.

We also can find this address-to-name correspon-
dence by viewing the running kernel’s symbol table via
/proc/ksyms (see Figure 5).

Address ranges start in the 0xFXXXXXXX block.
These symbols correspond to LKMs, such as device dri-
vers, which are currently loaded in memory. Following
these symbols are the kernel’s internal symbols, starting in

www.computer.org/security/ � IEEE SECURITY & PRIVACY 41

Complilation and linking path for source code

ExecutableRuntime
libraries

Source code
module.c

Compiler

Linker

KernelObject file
module.o

Application
programming

interface

Figure 3. The source code’s two paths of execution are traveling
from an object file into the kernel through specially designed
application interfaces or direct injections into the kernel as an
executable program.

Attacking Systems

the 0xC01XXXXX address range.
Symbols available within /proc/ksyms are restricted

to those that are “exported” globally, meaning that only
symbols that the kernel’s developer wishes to be used are
present. For example, the symbol vmlist_lock is in
the System.map, but not in /proc/ksyms. This means the
symbol is located in kernel memory, but hasn’t been ex-
ported publicly for the system call query_module to
identify. However, we still could leverage this symbol by
resolving it manually. Using the entry in the System.map
file, we could reference a symbol such as vmlist_lock
by the address to the left of its name. For example, the line

rwlock_t **my_vmlist_lock = (rwlock

_t **)0xC030CA7C;

creates a variable that points to the value located at the ad-
dress 0xC030CA7C. This lets a developer reference it as
if it were the actual variable vmlist_lock. This process
works for function pointers as well.

A second approach uses an exported symbol with an

address near that of the private function or variable that a
developer would like to utilize for this resolution. De-
pending on its address relative to the private symbol, for
example, he or she would add or subtract bytes for resolu-
tion. In this case, we could leverage the variable
vm_min_readahead to create a pointer to
vmlist_lock without having to hardcode an address.
We just declare the reference symbol as an external un-
signed pointer, point vmlist_lock to it, and add 0x4
to the address because it is four addresses lower in the Sys-
tem.map file:

extern unsigned int *vm_min_readahead;

rwlock_t **my_vmlist_lock = (rwlock_t

**)&vm_min_readahead + 0x4;.

While more portable than the previous technique, these
two approaches are time consuming and depend on the
kernel’s compilation. If, as in the first example, the address
is hardcoded, the deployment operating system’s compila-
tion must be identical to the developer’s. If, as in the sec-
ond example, you leverage global symbols, then the com-
pilation can’t contain any additional symbols between the
referenced symbol and the private symbol. You easily can
implement these techniques on small scales but they are
challenging and time consuming for large projects.

Dynamic symbol resolution
Starting with some distributions of the Linux 2.4 kernel,
we can use an enhancement in the operating system to
make external symbol resolution occur dynamically. On
compilations that have config_kallsyms selected, dy-
namic symbol resolution is relatively easy with a function
such as resolve_symbol based on Linux source code
(see Figure 6).

Calling resolve_symbol(“vmlist_lock”)

returns the address 0xC030CA7C. The Solaris function
mod_lookup also provides a similar interface to resolve
symbols from the kernel.

Dynamic resolution moves the problem of having an
external symbol name in a binary to the other side of the
equation by placing the name within quotes as an ASCII
string, and we easily can solve this using encoding, encryp-
tion, or other translation techniques. An efficient approach
is to create an internal symbol table for the binary, such as

char symbols[][2] = {

{“printk”,0x0},

{“vmlist”,0x0},

{“kmalloc”,0x0}

};.

The symbol’s name is on the left, and a place for the re-
solved address is on the right. When you invoke the
ASCII string removal techniques we previously de-

42 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

Figure 5. An example of exported symbols in Linux’s kernel symbol
table. The left column contains the address of the symbol, followed
by its name. Addresses located in the 0xFXXXXXXX range belong
to an LKM, and the third column in their case is the name of the
module in which they’re found. Addresses in the 0xCXXXXXXX
range belong to the kernel.

exp$ more /proc/ksyms

f89855e0 __insmod_tun_S.data_L96 [tun]

f8984060 __insmod_tun_S.text_L3488 [tun]

f8984f48 __insmod_tun_S.rodata_L20 [tun]

…

c012f2e0 get_user_pages_R30282b59

c030ca68 vm_max_readahead_Rf8c9aa3c

c030ca6c vm_min_readahead_R41ef314d

c0133170 fail_writepage_Rc4d0e111

c039c77c zone_table_Ra7268fc4

Figure 4. An example of symbols in Linux’s /boot/System.map file.
Recompiling the kernel automatically generates this file.

exp$ more /boot/System.map

c030ca6c D vm_min_readahead

c030ca70 D pagecache_lock_cacheline

c030ca70 d generic_file_vm_ops

c030ca7c D vmlist_lock

c030ca80 d slab_break_gfp_order

c030caa0 d cache_sizes

Attacking Systems

scribed, the symbol table becomes

char symbols[][5] = {

{“\x67\x65\x7e\x79\x63\x7c”,0x0},

{“\x61\x7a\x7b\x7e\x64\x63”,0x0},

{“\x7c\x7a\x76\x7b\x7b\x78\x74”,0x0}

};.
This function loops through the symbol table’s size and
populates the address fields by calling resolve_sym-
bol for each entry. Once the address is resolved and the
address stored to it, the encoded name disappears.

static inline int resolve_table() {

int i,size =

sizeof(symbols)/(sizeof(char

*)+sizeof(ulong));

for (i=0; i<size; i++) {

symbols[i][1] =

resolve_symbol(decode((char*)

symbols[i][0];

symbols[i][0] = NULL

if (symbols[i][1] == 0)

return -1;

}

return 1;

}

You must call this function prior to executing any
other functions in the program that are in the internal
symbol table.

Used with a decoding function, the resolution occurs
on the encoded ASCII strings instead of the plaintext
names. Combined, these let developers remove any refer-
ence to an external function or variable by creating a local
symbol table containing the name, encoding the ASCII
name with the created symbol table, and dynamically re-
solving the address for the symbol.

An example
We can combine the obfuscation techniques we de-
scribed to build end-to-end code that is challenging to
analyze, reverse engineer, or modify. As an example, we’ll
apply these concepts to convert the following overt line
into a stealthy one:

printk(“No strings attached”);.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 43

Figure 6. A Linux kallsyms-based symbol resolution technique that returns a symbol address for a string name passed in
as a parameter. By including this function in a LKM, the linker–loader is no longer used to resolve sensitive symbols and
more sophisticated obfuscation techniques can be implemented. In addition, symbols previously not exported for public
use can be resolved using this method.

extern const char __start___kallsyms[];

extern const char __stop___kallsyms[];

static inline unsigned long resolve_symbol(const char *string) {

const struct kallsyms_header *ka_hdr;

const struct kallsyms_section *ka_sec;

const struct kallsyms_symbol *ka_sym;

const char *ka_str;

int i;

const char *p;

if (__start___kallsyms >= __stop___kallsyms)

return 0;

ka_hdr = (struct kallsyms_header *)__start___kallsyms;

ka_sec = (struct kallsyms_section *)

((char *)(ka_hdr) + ka_hdr->section_off);

ka_sym = (struct kallsyms_symbol *)

((char *)(ka_hdr) + ka_hdr->symbol_off);

ka_str = ((char *)(ka_hdr) + ka_hdr->string_off);

for (i=0; i<ka_hdr->symbols; kallsyms_next_sym(ka_hdr,ka_sym),++i) {

p = ka_str + ka_sym->name_off;

if (match(p,string) == 0)

return ka_sym->symbol_addr;

}

return 0;

}

Attacking Systems

We must remove the reference to the external func-
tion printk and make the ASCII string “No strings
attached” invisible from inside the binary without
modifying the program’s functionality. To accomplish
this, we use a program we created to parse native C code
and then apply the algorithms we’ve already discussed.
Figure 7 shows the results.

The first step in this process is defining (in an include
file) an external function prototype that has a new and
non-attributable symbol name that will replace it. In Fig-
ure 7, NAME replaces the function name printk. Next,
we construct the symbol table, in which the first column
contains the encoded value of the symbol’s ASCII name.
The first entry corresponds to the name printk, which
was XOR’d with the cipher key value 0x23. The code
creates a pointer to the address column for each symbol.
Here, NAME points at the last column of the first symbol
entry. The column becomes populated when the re-
solve_table function is called at the start of execu-
tion. From this point on, the function NAME is synony-
mous with the function printk.

Next, the text “No strings attached” is en-
coded within the function call itself. Because we want
the function to operate transparently to the user, we
wrap the encoded string with a call to the decode()
function so that the plaintext string is what gets passed to
the printk function. The result is a piece of code that
operates identically to the original version, but doesn’t
contain the ASCII symbol printk or the “No
strings attached” string.

Real-world applications
Basic obfuscation techniques, like the examples we’ve

provided, possibly could suffer from a security-
through-obscurity problem: when you’re familiar with
an algorithm, you know how to obfuscate (and deob-
fuscate) its data. We easily can overcome this problem by
using robust encryption algorithms and strong encryp-
tion keys stored separately from the algorithm and ci-
pher text. In this scheme, a key stored outside of the file
(more complex then a single-character XOR value),
obviates the obscurity issue because without the key,
you wouldn’t be able to decrypt the data even if you
knew how the system worked.

Just as you shouldn’t leave your house key in your
home’s front door lock, you also must protect the encryp-
tion key. To strengthen the system, store the key sepa-
rately—not in the file itself. In addition, incorporating
the computer’s Internet Protocol (IP) or media access
control (MAC) addresses in the obfuscation system can
help prevent unwanted distribution beyond a single host.

P rotecting binaries from reverse engineering, tam-
pering, and unwanted distribution has long been a

goal that many have sought.1–3 The difficulty is that
with each improvement in prevention methods comes
an improvement in reverse-engineering techniques. In
addition, with developers rushing to push new products
to market, concepts of security and protection are often
left up to the end user to implement. With the increased
popularity of executable and linkable (ELF) parasitic4

and runtime5 viruses, mobile agents, and Unix e-
commerce software, integrity will become an increas-
ingly important factor for businesses. In the future, we
hope to see this increasing importance reflected by the

44 IEEE SECURITY & PRIVACY � JULY/AUGUST 2004

void (*NAME)(const char *format);
char *symbols[][5] = {
 {"\x67\x65\x7e\x79\x63\x7c",23,0,6,0x0},
 {"\x61\x7a\x7b\x7e\x64\x63",23,0,6,0x0},
 {"\x7c\x7a\x76\x7b\x7b\x78\x74",23,0,7,0x0}
};

Include file

NAME = symbols[0][4];
NAME((char *)decode("\x59\x78\x37\x64\x63\x65
\x7e\x79\x70\x64\x37\x76\x63\x63\x76\x74\x7f
\x72\x73\x1d\x17",23,0,21));

Code

Algorithm

printk("No strings attached");

Figure 7. Conversion to stealthy code. A before-and-after view demonstrates how we can obfuscate code by using string
encoding and dynamic symbol resolution.

Attacking Systems

incorporation of obfuscation and other antitampering
techniques in product suites, and taught in colleges and
universities to aspiring developers. Meanwhile, hackers
will continue to use these techniques to protect their
programs from analysis. The more familiar you are with
these techniques, the better armed you will be to iden-
tify and take action against them when they are used
with malicious intent.

References
1. H. Chang and M. Atallah, “Protecting Software Code

by Guards,” Workshop on Security and Privacy in Digital
Rights Management 2002, LNCS 2320, T. Sander, ed.,
Springer-Verlag, 2002, pp. 160–175.

2. C.S. Collberg and C. Thomborson, “Watermarking,
Tamper-Proofing, and Obfuscation—Tools for Software
Protection,” IEEE Trans. Software Eng., vol. 28, no. 8,
2002, pp. 735–746.

3. B. Horne et al., “Dynamic Self-Checking Techniques
for Improved Tamper Resistance,” Security and Privacy in

Digital Rights Management, ACM CCS-8 Workshop DRM
2001, LNCS 2320, Springer-Verlag, 2001, pp. 141–159.

4. S. Cesare, “ELF Parasite and Viruses,” http://packetstorm
security.nl/9901-exploits/elf-pv.txt.

5. Anonymous, “Runtime Process Infection,” Phrack, vol.
0x0b, no. 0x3b, 2002; www.phrack.org/phrack/59/
p59-0x08.txt.

Sandra Ring is deputy director of research for the Advanced
Technology Research Center at The Sytex Group. Her research
interests include computer and network security, autonomic
computing, and forensics. She is a member of ACM and has
published research on topics ranging from artificial intelligence
to kernel rootkit discovery. Contact her at sring@
atrc.sytexinc.com.

Eric Cole is chief scientist and director of research for the
Advanced Technology Research Center at The Sytex Group. His
research interests include steganography, cryptography, and
protocol security. He has a BS and MS in computer science from
New York Institute of Technology and a PhD in information tech-
nology from Pace University. Contact him at ecole@atrc.sytex-
inc.com.

www.computer.org/security/ � IEEE SECURITY & PRIVACY 45

EXECUTIVE COMMITTEE
President:
CARL K. CHANG*
Computer Science Dept.
Iowa State University
Ames, IA 50011-1040
Phone: +1 515 294 4377
Fax: +1 515 294 0258
c.chang@computer.org
President-Elect: GERALD L. ENGEL*
Past President: STEPHEN L. DIAMOND*
VP, Educational Activities: MURALI VARANASI*
VP, Electronic Products and Services:
LOWELL G. JOHNSON (1ST VP)*
VP, Conferences and Tutorials:
CHRISTINA SCHOBER†
VP, Chapters Activities:
RICHARD A. KEMMERER (2ND VP)*
VP, Publications: MICHAEL R. WILLIAMS*
VP, Standards Activities: JAMES W. MOORE*
VP, Technical Activities: YERVANT ZORIAN*
Secretary: OSCAR N. GARCIA*
Treasurer:RANGACHAR KASTURI†
2004–2005 IEEE Division V Director:
GENE F. HOFFNAGLE†
2003–2004 IEEE Division VIII Director:
JAMES D. ISAAK†
2004 IEEE Division VIII Director-Elect:
STEPHEN L. DIAMOND*
Computer Editor in Chief:DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†
* voting member of the Board of Governors
† nonvoting member of the Board of Governors

E X E C U T I V E S T A F F
Executive Director: DAVID W. HENNAGE
Assoc. Executive Director: ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Administration:
VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE

PURPOSE The IEEE Computer Society is the
world’s largest association of computing pro-
fessionals, and is the leading provider of tech-
nical information in the field.

MEMBERSHIP Members receive the month-
ly magazine Computer, discounts, and opportu-
nities to serve (all activities are led by volunteer
members). Membership is open to all IEEE
members, affiliate society members, and others
interested in the computer field.

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
www.computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

BOARD OF GOVERNORS
Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cybenko,
Haruhisha Ichikawa, Thomas W. Williams, Yervant
Zorian
Term Expiring 2005: Oscar N. Garcia, Mark A.
Grant, Michel Israel, Stephen B. Seidman, Kathleen M.
Swigger, Makoto Takizawa, Michael R. Williams
Term Expiring 2006: Mark Christensen, Alan
Clements, Annie Combelles, Ann Gates, Susan Men-
gel, James W. Moore, Bill Schilit
Next Board Meeting: 5 Nov. 2004, New Orleans

IEEE OFFICERS
President: ARTHUR W. WINSTON
President-Elect: W. CLEON ANDERSON
Past President: MICHAEL S. ADLER
Executive Director: DANIEL J. SENESE
Secretary: MOHAMED EL-HAWARY
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Pub. Services & Products: MICHAEL R. LIGHTNER
VP, Regional Activities: MARC T. APTER
VP, Standards Association: JAMES T. CARLO
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division V Director: GENE F. HOFFNAGLE
IEEE Division VIII Director: JAMES D. ISAAK
President, IEEE-USA: JOHN W. STEADMAN

COMPUTER SOCIETY OFFICES
Headquarters Office

1730 Massachusetts Ave. NW
Washington, DC 20036-1992
Phone: +1 202 371 0101
Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku
Tokyo107-0062, Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

