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ABSTRACT
This paper concentrates on visualizing computer viruses with-
out using virus specific signature information as a prior
stage of the very important problem of detecting computer
viruses. In this paper, we address the fact that each viruses
have its own character to be distinguished although it is in-
serted in the executable file. They cannot hide their own
feature through the SOM visualization; this feature is like
a DNA to determine an individual’s unique genetic code.
We present how virus codes affect the whole program pro-
jection. Without each virus signature, we present how the
virus pattern in Windows executable files tells us their fam-
ily. We show that the variant of each virus also can be
covered with each virus mask, which is produced by SOM.
We also present the file structure based SOMs of Windows
executable files.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software; I.2.6
[Artificial Intelligence]: Learning—Connectionism and

neural nets; I.5.2 [Pattern Recognition]: Design Method-
ology—Pattern analysis

General Terms
Security

Keywords
Visualization, Windows Executable Viruses, Self-Organizing
Maps

1. INTRODUCTION
The classic virus-detection techniques look for the pres-

ence of a virus-specific sequence of instructions, called a
virus signature, inside the program: if the signature is found,
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it is highly probable that the program is infected. For exam-
ple, the Win95.CIH (Chernobyl) virus is detected by check-
ing for the hexadecimal sequence like following [7]:

E800 0000 005B 8D4B 4251 5050
0F01 4C24 FE5B 83C3 1CFA 8B2B

We aim to design the SOM in a way that neurons will flag
the presence of peculiar patterns in Windows executable files
and that the position of the active neurons will reflect the po-
sition of potentially malicious content in the file. We expect
that we can find a similar pattern in files infected by viruses
of the same family. Although anti-virus software needs to
detect variants of each virus with different virus signature,
our approach shows us that each virus family has a virus
mask 1 like a DNA. We will present how virus codes affect
the SOM projection of the whole Windows executable pro-
gram and show the results of considering several Windows
viruses in this paper.

2. BACKGROUND OF SELF-ORGANIZING
MAP

Self-Organizing Map (SOM) [2] is an unsupervised neural
network method which has properties of both vector quanti-
zation and vector projection algorithms. A SOM consists of
neurons organized on a regular low-dimensional grid (Figure
1). Each neuron is a d-dimensional weight vector (prototype
vector, codebook vector) where d is equal to the dimension
of the input vectors. The neurons are connected to adja-
cent neurons by a neighbourhood relation, which dictates
the topology, or structure, of the map.

The SOM training algorithm includes the best-matching
weight vector, and its topological neighbours on the map,
which are updated: the region around the best-matching
vector is stretched towards the presented training sample.
The end result is that the neurons on the grid become or-
dered: neighbouring neurons have similar weight vectors. In
the traditional sequential training, samples are presented to
the map one at a time, and the algorithm gradually moves
the weight vectors towards them. In the batch training, the
data set is presented to the SOM as a whole, and the new
weight vectors are weighted averages of the data vectors.

1We have found sort of distinguished virus sign or special
feature in the SOM reflection. We call this a virus mask.



Figure 1: Discrete neighbourhood (size 0, 1, and
2) of the centermost unit:(a) hexagonal lattice,
(b) rectangular lattice. The innermost polygon
corresponds to 0-neighbourhood, the second to
the 1-neighbourhood and the biggest to the 2-
neighbourhood.

2.1 Data Analysis Using SOM
SOM combines vector quantization and vector projection.

The goal of SOM is to create a topologically ordered map-
ping of the data in the sense of a discredited principal surface
or curve.

2.1.1 Quantization
The SOM has properties of both vector quantization and

vector projection algorithms. The quantization from the
N training samples to M prototypes reduces the original
data set to a smaller, but still representative, set to work
with. Further analysis is performed primarily, or at least
initially using the prototype vectors instead of all of the
data. Using the reduced data set is only valid if it really
is representative of the original data. When the number
of prototypes approaches infinity and neighbourhood width
is very large, numerical experiments have shown that the
results are relatively accurate even for a small number of
prototypes [3]. While the connection between the density of
prototypes of SOM and the input data has not been derived
in the general case, it can be assumed that the SOM roughly
follows the density of the training data.

2.1.2 Projection
To be able to visualize the prototypes efficiently, vector

projection is needed. Together the set of prototype vec-
tors and their projections form a low-dimensional map of
the data manifold. Since the prototype vectors of the SOM
have well-defined positions on the low-dimensional map grid,
the SOM is a kind of vector projection algorithm. The pro-
jection of a data sample can be defined to be the index b or
location rb of its BMU (the best matching unit) on the map
grid. As a projection algorithm, SOM has an important ad-
vantage over many other methods. The topological ordering
of map units depends primarily on the local neighbourhood,
which is defined on the map grid. Since there are more map
units where data density is high, the neighbourhood in these
areas becomes smaller as measured in the input space. Thus,
the projection tunes to local data density.

3. WINDOWS EXECUTABLE FILE STRUC-
TURE & VIRUS LOCATION

Figure 2: Virus positions in New EXE file.

The most common method of virus infection is by ap-
pending the virus to the end of file. In this process the virus
changes the top of the file in such a way that the virus code is
executed first. This kind of appending is simple and usually
effective. The virus writer does not need to know anything
about the program to which the virus will append and the
appended program simply serves as a carrier for the virus
[6].

Figure 3: Windows Executable file: DOS Stub and
PE header part

In the Windows executables (NewEXE - NE, PE, LE,
LX), the fields in the NewEXE header are changed and the
virus code is appending to the end of the program code.
The structure of this header is much more complicated and
there are more fields to be changed; the starting address,



the number of sections in the file, properties of the sections
etc. In addition to that, before infection, the size of the file
may increase to a multiple of one paragraph (16 bytes) in
DOS or to a section in Windows. The size of the section
depends on the properties of the EXE file header. Figure 2
shows this case.

According to these 4 different areas in virus-infected files,
we worked out to train SOMs. The real data of the virus-
infected file is like in Figure 3 and Figure 4. In these fig-
ures, the location part is counted by octal numbering. When
we examined several virus-infected files, most files have the
same size of DOS stub (say, 128 bytes), and the other parts
are flexible. In addition, apart from virus code, only PE
header part is filled with quite similar pattern, which con-
tains text, data, source and relocation.

Figure 4: Windows Executable file: Program Code
& Data and Virus position.

Furthermore, the program code & data part is filled with
encrypted characters which are made by certain compilers.
However, from virus code part, the characters look quite
different from original program codes. As we examine like
in Figure 3 and Figure 4, virus part character feature is
different from the other program codes, which means that
once program codes were compiled, the virus code were in-
serted by force. Since we have found these differences, we
attempted to label each part, such as DS for the DOS stub,
PE for the NewEXE header, PR for the program code &
data, and VS for the virus code, to see which part is dis-
played differently by SOMs. After training and testing sev-
eral virus-infected files, we have strong confidence that this
virus part is inserted by force, and this virus code should
have different code scheme compared with original program
code, since the original code is compiled by a certain com-

Table 1: location starting point information of Test
files (Unit: bytes)
Note. DOS stub always starts from 0000. PE : PE header,
PR: Program Code & Data, VS: Virus Code

Virus file PE PR VS
Win95.CIH Ver 1.2 128 576 11632
Win95.CIH Ver 1.3 128 624 14256
Win95.CIH Ver 1.4 128 576 1968

Win95.Boza.A 128 1024 2016
Win95.Boza.C 256 1536 3072

Win32.Apparition 128 1024 38912
Win32.HLLP.Semisoft 128 1024 41360

piler. [Table 1] is our test data file information. As you see
[Table 1], most of files have the same DOS stub size.

Viruses are called polymorphic if they cannot, or can but
with great difficulty be detected using the virus signature.
This is achieved by two main ways. The first is by encrypting
the main code of the virus with non-constant key with ran-
dom sets of decryption commands, the second is by chang-
ing the executable virus code. Polymorphic viruses exist of
all kinds from boot and file, even macro viruses. In this pa-
per, we are not dealing with these polymorphic viruses sepa-
rately, because these polymorphic viruses can be included in
parasitic viruses or macro viruses. Especially, changing ex-
ecutable codes is mostly by macro viruses, which randomly
change the names of their variables, insert empty lines or
change their codes in some other ways while making copies
of themselves. Therefore the operating algorithm of a virus
remains unchanged, but the virus code changes virtually
completely from one infection to another.

We assume polymorphic and metamorphic viruses are some-
how inserted in the executable files. Thus their figures,
whether they are encrypted or not, are also distinguished
compared with the other program codes.

4. VISUALIZING WINDOWS EXECUTABLE
VIRUSES

To train and visualize SOMs from virus-infected files, we
use SOM Toolbox 2.0 [1], a software library for MATLAB 5.3
[4]. The projection is that the originally high-dimensional
reference vector space is compressed into two dimensions,
making the visualization of the data possible. Unified dis-
tance matrix (u-matrix), is a method of displaying SOMs.
It represents the map as a regular grid of neurons. The size
and topology of the map can readily be observed from the
picture where each element represents a neuron. First, when
generating a u-matrix, a distance matrix between the refer-
ence vectors of adjacent neurons of two-dimensional map
is formed. Then, some representation for the matrix is se-
lected, e.g., a grey-level image. The colours in the figure
have been selected so that in the black/white printout, the
darker the colour between two neurons is, the closer is the
relative distance between them. (In colour printout, blue
colour part means closeness of distance between two neu-
rons.) In addition, labelling is used to categorize the units
or some units by giving them names. We use several Win-
dows executable files to test. [Table 2] is the file information.



Table 2: Test file information (Unit: Bytes)

variants of the virus file size
Before infection by CIH1.2 11,632
Before infection by CIH1.3 14,256
Before infection by CIH1.4 1,968

Win95.CIH Ver 1.2 19,536
Win95.CIH Ver 1.3 36,864
Win95.CIH Ver 1.4 4,608

Before infection by Win95.Boza.A 2,016
Before infection by Win95.Boza.C 3,072

Win95.Boza.A 12,408
Win95.Boza.C 16,384

Before infection by Win32.Apparition 38,912
Win32.Apparition 96,239

Before infection by Win32.HLLP.Semisoft 41,360
Win32.HLLP.Semisoft 59,904

4.1 Data Format For Training SOM
To train SOMs, we make our data like a table. Each row

of the table is one data sample. The columns of the table
are the variables of the data set. The items on the row are
the variables, or components, of the data set (Figure 5).
The variables might be the properties of an object, or a set
of measurements measured at a specific time. Every sample
has the same set of variables. Thus each column of the table
holds all values for one variable.

Figure 5: Table-format data: there can be any num-
ber of samples, but all samples have fixed length,
and consist of the sample variables.

To match this table structure, we transformed binary for-
mat of virus-infected files with each 4 bytes for each col-
umn variables, e.g. each sample contains 32 bytes of virus-
infected files. In addition, to deal with binary data effi-
ciently, we converted all data into unsigned integer format.
So through SOM normalization, this integer data can be
normalized between 0 and 1.

4.2 Case Example : Win95 CIH Virus
The Win95.CIH (Chernobyl) [5] is a Windows95/98/NT

specific parasitic virus infecting Windows PE (Portable Ex-
ecutable) files, about 1Kbyte of length. There are three
original virus versions (1.2, 1.3 and 1.4) known, which are
very closely related and only differ in few parts of their code.
They have different lengths, texts inside the virus code and
trigger date.

Figure 6: SOMs of Windows EXE files before
Win95.CIH virus infection.

Figure 7: SOMs of NEW EXE files infected by
Win95.CIH viruses.

Figure 6 shows the test Windows executable files before
Win95.CIH virus infected. As you can see all the SOM of the
test Windows executable files are different from each other.
Figure 7 shows the trained SOMs of Win95.CIH 1.2, 1.3 and
1.4 infected test Windows executable files. Each Win95.CIH
(Chernobyl) virus has obvious location (the upper of centre)
of lower degree of weight data 2. Although each Windows
executable file is different, the SOM projection of CIH virus-
infected files look similar and have same sort of projection

2The darker the colour between two neurons is, the closer
is the relative distance between them. The upper is of the
bar, the bigger is the relative distance between data. In
black/white printout, the bar displays similar colour of black
in the SOM. However, most of black colour in the SOMs
represents the blue colour part or close distance between
two neurons, which means the black colour part represents
that the relative distance is smaller.



Figure 8: Virus Distribution of CIH 1.2, 1.3, and 1.4 virus.

map. We could call this similar sort of figure in each virus
as a virus mask. Hence, this can be called CIH virus mask.
Anti-virus software needs to detect this Win95.CIH virus
with different virus signature in each version. However, our
approach tells us that these are same family like having a
same DNA.

To check that the upper centre part is filled with the CIH
virus code, we trained the SOM with label which categorized
by given name which we gave according to the [Table 1]. We
made [Table 1] based on the file structure and when we made
the data set, we put the label on each column. The result of
the projection with labels is like in Figure 8. This projection
is based on the labels, therefore, the whole figure (Figure 8)
is different from previous figures (Figure 7).

We add round signs in each area e.g. DS (DOS stub),
PE (New EXE Header), VS (Virus Code) area except PR
(Program Code & Data) area. Since PR (Program Code
& Data) area is been big enough, we do not need to make
a distinguished round for this. As Figure 8 is shown, there
are two part has smaller distances than the other parts, e.g.,
PE and VS. This tells us that PE and VS includes smaller
likelihood in their code. Even if PE also has smaller dis-
tance between two neurons, VS has major of dark colour in
black/white printout, (or blue colour in colour printout).

4.3 Case Example : Win95 Boza Virus
Win95 Boza virus is the first known virus infecting Win-

dows Portable Executable (PE) files, such files are used by
Windows 95 and Windows NT. However, Boza does not in-
fect machines running the Microsoft Windows NT operat-
ing system. Boza’s spreading technique resembles some of
the early DOS viruses. When the first DOS viruses were
found in 1980’s, they were very simple compared to some of
the currently known polymorphic multipartite fast infect-
ing stealth viruses. However, it is not a dangerous para-
sitic NewEXE (PE) virus. It searches for EXE files, checks
the files for PE signature, then creates new section named
”.vlad”, and writes its code into that section.

We trained two different Boza virus files. Figure 9 shows
us the Boza virus mask. In addition, the lighter the colour

Figure 9: SOMs of Win95 Boza.A and Boza.C
viruses.

between two neurons is, the smaller is the relative distance
between them. We assume that the major of lighter colour
in the upper centre has virus codes. To check and prove
this, we made another projection with labels like in Figure
10. As we expected, the major of smaller likelihood part is
the Boza virus code. Although NewEXE header code also
has smaller likelihood, it does not change the majority.

4.4 Case Example : Other Viruses

4.4.1 Win32.Apparition
This is a memory resident Windows32 (Windows95/NT)

parasitic infector. The virus has a very unusual structure.
The main part (about 60K) is the virus code (virus routines
and C runtime library), text strings, icon and other data
used by the virus while installing and spreading. The next
block (3.5K) contains a packed (with LZ method) MS Word
template - Word macro virus. The third block (21K) con-
tains packed (by LZ) virus source code. And the last block
(3K) contains resources file that is used when the virus runs
Borland C compiler.



Figure 10: Virus Distribution of Boza.A and Boza.C viruses.

Figure 11: SOMs of Win NT apparition virus and its distribution.

As we looked the previous virus SOMs, this SOM also
has the Win32.apparition virus mask. Figure 11 shows the
projection of Win32.apparition virus and the other projec-
tion with label for the distribution. In addition, since this
virus code part has unusual structure, the distribution itself
causes VS part is quite similar with the PR parts. Nev-
ertheless, the major of the smaller likelihood part is virus
code.

4.4.2 Win32.HLLP.Semisoft
Win32.HLLP.Semisoft virus is an unusual file infector which

infects files under Windows 95 and Windows NT. The virus
creates these 59,904 byte files in the WINDOWS directory:
WINIPX.EXE, WINIPXA.EXE, WINSRVC.EXE, and EX-
PLORE.EXE. The virus infects other EXE files as they are
executed once the virus is loaded into memory. The virus
depends on a network card being installed to work fully. The
virus may have been intended as a prototype of a “spy” pro-
gram that would intercept information and send this out via



Figure 12: SOMs of Win32 HLLP.Semisoft virus and its distribution.

Table 3: SOM Result of test files

CIH1.2 CIH1.3 CIH1.4 Boza.A Boza.C apparition HLLP.Semisoft
Quantization error 0.393 0.393 0.393 0.206 0.377 0.445 0.461
Topographic error 0.055 0.050 0.050 0.041 0.015 0.108 0.127
Error Percentage 14.6764 20.6107 20.6107 13.5314 29.3233 10.2605 28.9616

a TCP/IP connection. A task “6.666” interferes with nor-
mal shutdown. The infected files all have a Notepad Icon
when they are visible in Explorer.

Figure 12 shows the projection of Win32.HLLP.Semisoft
virus and the other projection with label for the distribution.
As we looked the previous virus SOMs, this SOM also has
the Win32.HLLP.Semisoft virus mask and the major of the
smaller likelihood part is virus code.

4.5 Summary of Experiments: Map Quality
Measures

After the SOM has been trained, it is important to know
whether it has properly adapted itself to the training data.
Because it is obvious that one optimal map for the given
input data must exist, several map quality measures have
been proposed. Usually, the quality of the SOM is evaluated
based on the mapping precision and the topology preserva-
tion.

4.5.1 Mapping Precision
The mapping precision measure describes how accurately

the neurons respond to the given data set. For example,
if the reference vector of the BMU calculated for a given
testing vector xi is exactly the same xi, the error in precision
is then 0. Normally, the number of data vectors exceeds the
number of neurons and the precision error is thus always
different from 0.

A common measure that calculates the precision of the

mapping is the average quantization error over the entire
data set:

Eq =
1

N

n
X

i=1

||xi + mc||

Where, x is a sample vector and m is a reference vector.

4.5.2 Topology Preservation
The topology preservation measure describes how well the

SOM preserves the topology of the studied data set. Unlike
the mapping precision measure, it considers the structure
of the map. For a strangely twisted map, the topographic
error is big even if the mapping precision error is small. A
simple method for calculating the topographic error:

Et =
1

N

n
X

k=1

u(xk)

Where, u(xk) is 1 if the first and second BMUs of xk are
not next to each other. Otherwise u(xk) is 0.

[Table 3] summarizes error ratios of our test virus files.
There are three items in the Table, a quantization error is
for mapping precision, a topographic error is for topology
preservation, and error percentage is for the label error per
distance (similarity). The lower quantization error is, the
more exact the neuron responds. In addition, the lower to-
pographic error is, the better the SOM preserves the topol-
ogy.



Although there are variants of the virus-infected files, SOM
projections tell us that they are a same family because of
their own virus mask. It is like having a same DNA in the
same family. We believe, using this virus mask, we can ap-
ply to find out variant viruses, which are changed some part
from original virus codes.

5. CONCLUSION AND FUTURE WORK
We investigated the Windows virus-infected files, in fact,

the NewEXE file format, using SOMs. As we expected,
we have found a virus pattern in a same virus-infected files.
Although anti-virus software needs to detect variants of each
virus with different virus signatures, our approach shows
us that each virus family has a virus mask like a DNA.
Initial experiments show that this approach appears to be
successful. In addition, we shall attempt to find out virus
pattern similarity, not only a same virus family, but also a
virus mask based on the virus-infected file structure in the
future. How to detect computer virus using this virus mask?
This is the next step of this ongoing project, and this could
be a future work.
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