
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221566041

Idea: Opcode-Sequence-Based Malware Detection

Conference Paper · February 2010

DOI: 10.1007/978-3-642-11747-3_3 · Source: DBLP

CITATIONS

170
READS

2,568

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Supervised Machine Learning for the Detection of Troll Profiles in Twitter Social Network: Application to a Real Case of Cyberbullying View project

Igor Santos

University of Deusto

114 PUBLICATIONS 2,451 CITATIONS

SEE PROFILE

Felix Brezo

University of Deusto

17 PUBLICATIONS 799 CITATIONS

SEE PROFILE

Borja Sanz

University of Deusto

59 PUBLICATIONS 931 CITATIONS

SEE PROFILE

Carlos Laorden

University of Deusto

47 PUBLICATIONS 1,005 CITATIONS

SEE PROFILE

All content following this page was uploaded by Carlos Laorden on 10 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221566041_Idea_Opcode-Sequence-Based_Malware_Detection?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221566041_Idea_Opcode-Sequence-Based_Malware_Detection?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Supervised-Machine-Learning-for-the-Detection-of-Troll-Profiles-in-Twitter-Social-Network-Application-to-a-Real-Case-of-Cyberbullying?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Santos-22?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Santos-22?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Deusto?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Igor-Santos-22?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Brezo?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Brezo?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Deusto?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Brezo?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Borja-Sanz-3?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Borja-Sanz-3?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Deusto?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Borja-Sanz-3?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Laorden?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Laorden?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Deusto?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Laorden?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carlos-Laorden?enrichId=rgreq-51fcf54d5ac23f8269b221ca5e2a2e18-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU2NjA0MTtBUzoxMDY1MjUzNDMzNTQ4ODNAMTQwMjQwOTAyOTM5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Idea: Opcode-sequence-based Malware Detection

Igor Santos1, Felix Brezo1, Javier Nieves1, Yoseba K. Penya2, Borja Sanz1,
Carlos Laorden1 and Pablo G. Bringas1

1S3Lab, 2eNergy Lab
University of Deusto

Bilbao, Spain
{isantos,felix.brezo,javier.nieves,yoseba.penya,borja.

sanz,claorden,pablo.garcia.bringas}@deusto.es

Abstract. Malware is every malicious code that has the potential to
harm any computer or network. The amount of malware is increasing
faster every year and poses a serious security threat. Hence, malware
detection has become a critical topic in computer security. Currently,
signature-based detection is the most extended method within commer-
cial antivirus. Although this method is still used on most popular com-
mercial computer antivirus software, it can only achieve detection once
the virus has already caused damage and it is registered. Therefore, it
fails to detect new variations of known malware. In this paper, we pro-
pose a new method to detect variants of known malware families. This
method is based on the frequency of appearance of opcode sequences.
Furthermore, we describe a method to mine the relevance of each opcode
and, thereby, weigh each opcode sequence frequency. We show that this
method provides an effective way to detect variants of known malware
families.

Key words: malware detection, computer security, machine learning

1 Introduction

Malware (or malicious software) is every computer software that has harmful in-
tentions, such as viruses, Trojan horses, spyware or Internet worms. The amount,
power and variety of malware increases every year as well as its ability to avoid all
kind of security barriers [1] due to, among other reasons, the growth of Internet.

Furthermore, malware writers use code obfuscation techniques to disguise an
already known security threat from classic syntactic malware detectors. These
facts have led to a situation in which malware writers develop new viruses and
different ways for hiding their code, while researchers design new tools and strate-
gies to detect them [2].

Generally, the classic method to detect malware relies on a signature database
[3] (i.e. list of signatures). An example of a signature is a sequence of bytes that is
always present in a concrete malware file and within the files already infected by
that malware. In order to determine a file signature for a new malware executable
and to finally find a proper solution for it, specialists have to wait until that

new malware instance has damaged several computers or networks. In this way,
malware is detected by comparing its bytes with that list of signatures. When a
match is found the tested file will be identified as the malware instance it matches
with. This approach has proved to be effective when the threats are known in
beforehand, and it is the most extended solution within antivirus software.

Still, upon a new malware appearance and until the corresponding file signa-
ture is obtained, mutations (i.e. aforementioned obfuscated variants) of the orig-
inal malware may be released in the meanwhile. Therefore, already mentioned
classic signature-based malware detectors fail to detect those new variants [2].

Against this background we advance the state of art in two main ways. First,
we address here a new method that is able to mine the relevance of an opcode
(operational code) for detecting malicious behaviour. Specifically, we compute
the frequency with which the opcode appears in a collection of malware and
in a collection of benign software and, hereafter, we calculate a discrimination
ratio based on statistics. In this way, we finally acquire a weight for each opcode.
Second, we propose a new method to compute similarity between two executable
files that relies on opcode sequence frequency. We weigh this opcode sequence
frequency with the obtained opcode relevance to balance each sequence in the
way how discriminant the composing opcodes are.

2 Mining opcode relevance

Opcodes (or operational codes) can act as a predictor for detecting obfuscated or
metamorphic malware [4]. Some of the opcodes (i.e. mov or push), however, have
a high frequency of appearance within malware and benign executables, therefore
the resultant similarity degree (if based on opcode frequency) between two files
can be somehow distorted. Hence, we propose a way to avoid this phenomenon
and to give each opcode the relevance that it really has.

In this way, we have collected malware from the VxHeavens website [5] form-
ing a malware dataset of 13189 malware executables. This dataset contains only
PE executable files, and, more accurately, it is made up of different kind of ma-
licious software (e.g. computer viruses, Trojan horses, spyware, etc). For the
benign software dataset, we have collected 13000 executables from our comput-
ers. This benign dataset includes, for instance, word-processors, drawing tools,
windows games, internet browsers, pdf viewers and so on.

We accomplish the following steps for computing the relevance of each op-
code. First, we disassemble the executables. In this step, we have used The New-
Basic Assembler [6] as the main tool for obtaining the assembly files. Second,
using the generated assembly files, we have built an opcode profile file. Specif-
ically, this file contains a list with the operational code and the un-normalized
frequency within both datasets (i.e. benign software dataset and malicious soft-
ware dataset). Finally, we compute the relevance of each opcode based on the
frequency with which it appears in both datasets. To this extent, we use Mutual
Information [7], I(X;Y) =

∑
yεY

∑
xεX p(x, y) log

(
p(x,y)
p(x)·p(y)

)
. Mutual informa-

tion is a measure that indicates how statistically dependant two variables are.

In our particular case, we define the two variables as each opcode frequency and
whether the instance is malware. In this way, X is the opcode frequency and
Y is the class of the file (i.e. malware or benign software), p(x, y) is the joint
probability distribution function of X and Y , p(x) and p(y) are the marginal
probability distribution functions of X and Y .

Furthermore, once we computed the mutual information between each opcode
and the executable class (malware of benign software) and we sorted them, we
created an opcode relevance file. Thereby, this list of opcode relevance can help
us to achieve a more accurate detection of malware variations since we are able
to weigh the similarity function using these calculated opcode relevance and
reducing the noise that irrelevant opcodes can produce.

3 Malware detection method

In order to detect both malware variants we extract the opcode sequences and
their frequency of appearance. More accurately, we define a program ρ as a
sequence of instructions I where ρ = (I1, I2, ..., In−1, In). An instruction is com-
posed by an operational code (opcode) and a parameter or list of parameters. In
this way, we assume that a program is made up of opcodes. These opcodes can
gather into several blocks that we call opcode sequences.

More accurately, we assume a program ρ as a set of ordered opcodes o,
ρ = (o1, o2, o3, o4, ..., on−1, on), where n is the number of instructions I of the
program ρ. A subgroup of opcodes is defined as an opcode sequence os where
os ⊆ ρ, and it is made up of opcodes o, os = (o1, o2, o3, ..., om−1, om), where m
is the length of the sequence of opcodes os.

First of all, we choose the length of opcode sequences. Afterwards, we com-
pute the frequency of appearance of each opcode sequence. Specifically, we use
term frequency [8], tfi,j = ni,j∑

k nk,j
, that is a weight widely used in information

retrieval. More accurately, ni,j is the number of times the term ti,j (in our case
opcode sequence) appears in a document d, and

∑
k nk,j is the total number

of terms in the document d (in our case the total number of possible opcode
sequences).

Further, we compute this measure for every possible opcode sequence of
a fixed length n, acquiring by doing so, a vector −→v made up of frequencies
of opcode sequences S = (o1, o2, o3, ..., on−1, on). We weigh the frequency of
appearance of this opcode sequence using the weights described in section 2. To
this extent, we define weighted term frequency (wtf) as the result of weighting the
relevance of each opcode when calculating the term frequency. Specifically, we
compute it as the result of multiplying term frequency by the calculated weight
of every opcode in the sequence. In this way, weight(o) is the calculated weight
for the opcode o and tfi,j is the term frequency measure for the given opcode
sequence, wtfi,j = tfi,j ·

∏
oεS

weight(o)
100 . Once we have calculated the weighted

term frequency, we have the vector of weighted opcode sequence frequencies. −→v =
(wtf1, wtf2, wtf3, ..., wtfn−1, wtfn).

We have focused on detecting known malware variants in this method. In this
way, what we want to provide is a similarity measure between two files. Once we
extract the opcode sequences that will act as features, we have a proper represen-
tation of the files as two input vectors −→v and −→u of opcode sequences. Hereafter,
we can calculate a similarity measure between those two vectors. In this way, we
use cosine similarity, sim(−→v ,−→u) = cos (θ) =

−→v ·−→u
||−→v ||·||−→u || [9]. Therefore, we think

that this measure will give a high result when two versions of the same malware
instance are compared.

Fig. 1. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with their variants for n=1

Fig. 2. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with benign executables for n=1

Fig. 3. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with their variants for n=2

Fig. 4. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with benign executables for n=2

4 Experimental Results

For the following experiment, we have used two different datasets for testing the
system: a malware dataset and a benign software one. First, we downloaded a big
malware collection from VxHeavens [5] website conformed by different malicious
code such as trojan horses, virus or worms. Specifically, we have used the next
malware families: Agobot, Bifrose, Kelvir, Netsky, Opanki and Protoride.

We have extracted the opcode sequences of a fixed length (n) with n = 1 and
n = 2 for each malware and some of its variants. Moreover, we have followed the
same procedure for the benign software dataset. Hereafter, we have computed
the cosine similarity between each malware and its set of variants. Further, we
have computed the similarity of the malware instance with the whole benign
software dataset.

Fig. 5. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with their variants for n=1 and n=2
combined

Specifically, we have performed this process for every malware executable file
within the dataset. For each malware family, we have randomly chosen one of
its variants as the known instance and we have computed the cosine similarity
between this variant and the other variants of that specific malware family.
Moreover, we have performed the same procedure with a set of benign software
in order to test the appearance of false positives.

Fig. 1 shows the obtained results of the comparison of malware families and
their variants for an opcode sequence length n of 1. In this way, nearly every
malware variant achieved a similarity degree between 90% and 100%. Still, the
results obtained when comparing with the benign dataset (see Fig. 2) show that
the similarity degree is too high, thus, this opcode sequence length seems to be
not appropriate.

For an opcode sequence length of 2, the obtained results in terms of mal-
ware variant detection(see Fig. 3) show that the similarity degrees are more
distributed in frequencies, however, the majority of the variants achieved a rela-
tively high results. In addition, Fig. 4 shows the obtained results for the benign
dataset. In this way, the results are better for this opcode sequence length, being
more frequent the low similarity ratios.

Summarizing, on one hand, for the obtained results in terms of similarity
degree for malware variant detection, the most frequent similarity degree is in
the 90-100% interval. Moreover, the similarity degree frequency decreases and so
the frequency does. Therefore, this method will be able to detect reliably a high
number of malware variants after selecting the appropriate threshold of similarity
ratio for declaring an executable as malware variant. Nevertheless, some of the
executables were packed and, thereby, there are several malware variants that
when computing the similarity degree did not achieve a high similarity degree.

Still, the similarity degrees between the two kind of sets (i.e. malware variants
and benign software) are not different enough. Therefore, we decided to perform

Fig. 6. A histogram showing the obtained results in terms of frequency of similarity
ratio for the comparison of malware instances with benign executables for n=1 and
n=2 combined

another experiment where the different opcode sequence lengths are combined
(n = 1 and n = 2). Figures 5 and 6 show the obtained results. In this way,
the malware variant similarity degrees remained quite high whilst the benign
similarity degrees scrolled to lower results. On the other hand, for the obtained
results in terms of similarity degree when comparing the malware instances with
the benign dataset, as one may think in beforehand, the behaviour of the system
yields to be nearly the opposite than when comparing it with its variants. In this
way, the system achieved low similarity degrees in the majority of the cases of
the benign dataset. Hence, if we select a threshold that allows us to detect the
most number of malware variants as possible whilst the number of false positives
is kept to 0, our method renders as a very useful tool to detect malware variants.

5 Related Work

There has been a great concern regarding malware detection in the last years.
Generally, we can classify malware detection in static or dynamic approaches.
Static detectors obtain features for further analysis without executing them since
dynamic detectors execute malware in a contained environment.

In this way, static analysis for malware detection can be focused on the binary
executables [10] or in source code [11] like the method proposed in this paper.

With regard to the binary analysis of the executables, there has been an hectic
activity around the use of machine-learning techniques over byte-sequences. The
first attempt of using non-overlapping sequence of bytes of a given length n as
features to train a machine-learning classifier was proposed by Schulz et al. [12].
In that approach the authors proposed a method using the printable ASCII
strings of the binary, tri-grams of bytes, the list of imported dynamically linked
libraries (DLL), the list of DLL functions imported and the number of functions
for each DLL. They applied multiple learning algorithms showing that multi-

Näıve Bayes perform the best. Kolter et al. [13] improved the results obtained
by Schulz et al. using n-grams (overlapping byte sequences) instead of non-
overlapping sequences. Their method used several algorithms and the best results
were achieved by a boosted decision tree. In a similar vein, a lot of work has
been made over n-gram distributions of byte sequences and machine-learning
[14]. Still, most of the features they used for the training of the classifiers can
be changed easily by simply changing the compiler since they focus on byte
distributions.

Moreover, several approaches have been based in the so-called Control Flow
Graph Analysis. In this way, it is worth to mention the work of Christodescu
and Jha [2] that proposed a method based of Control Flow Analysis to handle
obfuscations in malicious software. Lately, Christodescu et. at. [15] improved the
previous work including semantic-templates of malicious specifications. Never-
theless, the time resources they consume render them as not already full prepared
to be adopted for antivirus vendors, although Control Flow Analysis techniques
have proved to obtain some very valuable information of malicious behaviours.

Dynamic analysis for malware detection, as aforementioned, runs a program
in a contained environment and collects information about it. Despite they are
limited by one execution flow, they can overcome the main issue of static analy-
sis: be sure that the code that will be executed is the one that is being analysed
[16]. Therefore, these methods do not have to face obfuscations or in-memory
mutation [17]. In this way, the safe environment can be based on a virtual ma-
chine [18] or based on DLL Injection and API Hooking [19].

6 Conclusions and future work

Malware detection has risen to become a topic of research and concern due to
its increasing growth in past years. The classic signature methods that antivirus
vendors have been using are no longer effective since the increasing number of
new malware renders them unuseful. Therefore, this technique has to be comple-
mented with more complex methods that provide detection of malware variants,
in an effort of detecting more malware instances with a single signature.

In this paper, we proposed a method detecting malware variants that relied
in opcodes sequences in order to construct a vector representation of the exe-
cutables. In this way, based upon some length sequences, the system was able
to detect the malicious behaviour of malware variants. Specifically, experiments
have shown the following abilities of the system. First, the system was able to
identify malware variants. Second, it was able to distinguish benign executables.

The future development of this malware detection system is oriented in three
main directions. First, we will focus on facing packed executables using a hybrid
dynamic-static approach. Second, we will expand the used features using even
longer sequences and more information like system calls. Finally, we will perform
experiments with a larger malware dataset.

References

1. Karsperky-Labs: Kaspersky Security Bulletin: Statistics 2008 (2009)
2. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious

patterns. In: Proceedings of the 12th USENIX Security Symposium. (February
2003) 169–186

3. Morley, P.: Processing virus collections. In: Proceedings of the 2001 Virus Bulletin
Conference (VB2001), Virus Bulletin (2001) 129–134

4. Bilar, D.: Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics 1(2) (2007) 156–168

5. VX heavens (2009) url: http://vx.netlux.org/ Last Accessed: Last accessed:
September 29th, 2009.

6. NewBasic - An x86 Assembler/Disassembler for DOS
http://www.frontiernet.net/ fys/newbasic.htm Last accessed: September 29th,
2009.

7. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: cri-
teria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2005) 1226–1238

8. McGill, M., Salton, G.: Introduction to modern information retrieval. McGraw-Hill
(1983)

9. Tata, S., Patel, J.: Estimating the Selectivity of tf-idf based Cosine Similarity
Predicates. SIGMOD Record 36(2) (2007) 75–80

10. Carrera, E., Erdélyi, G.: Digital genome mapping–advanced binary malware anal-
ysis. In: Virus Bulletin Conference. (2004) 187–197

11. Ashcraft, K., Engler, D.: Using programmer-written compiler extensions to catch
security holes. In: Proceedings of the 23rd IEEE Symposium on Security and
Privacy. (2002) 143–159

12. Schultz, M., Eskin, E., Zadok, F., Stolfo, S.: Data mining methods for detection
of new malicious executables. In: Proceedings of the 22th IEEE Symposium on
Security and Privacy. (2001) 38–49

13. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild.
In: Proceedings of the 10th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), New York, NY, USA, ACM (2004) 470–478

14. Santos, I., Penya, Y., Devesa, J., Bringas, P.: N-Grams-based file signatures for
malware detection. In: Proceedings of the 11th International Conference on Enter-
prise Information Systems (ICEIS), Volume AIDSS. (2009) 317–320

15. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy. (2005) 32–46

16. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. Lecture Notes in Computer Science 5137
(2008) 143–163

17. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
Journal in Computer Virology 2(1) (2006) 67–77

18. King, S., Chen, P.: SubVirt: Implementing malware with virtual machines. In:
2006 IEEE Symposium on Security and Privacy. (2006) 314–327

19. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using cwsandbox. IEEE Security & Privacy 5(2) (2007) 32–39

View publication statsView publication stats

https://www.researchgate.net/publication/221566041

