Anatomy of the Process Environment Block (PEB)
(Windows Internals)

@ ntopcode.wordpress.com/2018/02/26/anatomy-of-the-process-environment-block-peb-windows-internals/

February 26, 2018

The Process Environment Block (PEB) is a wonderful thing, and I'd be lying if | told you that |
didn’t love it. It has been present in Windows since the introduction of the Win2k (Windows
2000) and it has been improved through newer versions of Windows ever since. On earlier
versions of Windows, it could be abused to do some nasty things like hiding loaded modules
present within a process (to prevent them from being found — obviously this is not a beautiful
thing though).

What is this magic so-called “Process Environment (PEB)”? The PEB is a structure
which holds data about the current process under it’s field values — some fields being
structures themselves to hold even more data. Every process has it's own PEB and the
Windows Kernel will also have access to the PEB of every user-mode process so it can keep
track of certain data stored within it.

Where does this sorcery come from? The PEB structure comes from the Windows Kernel
(although is accessible in user-mode as well). The PEB comes from the Thread Environment
Block (TEB) which also happens to be commonly referred to as the Thread Information Block
(TIB). The TEB is responsible for holding data about the current thread — every thread has
it's own TEB structure.

Can the Thread Environment Block or the Process Environment Block be abused for
malicious purposes? Of course they can! In fact, they have been abused for malicious
purposes in the past but Microsoft has made many changes over the recent years to help
prevent this. An example would be in the past where rootkits would inject a DLL into another
running process, and then access the PEB structure of the current process they had injected
into (the PPEB structure is a pointer to the PEB structure) so they could locate the list of
loaded modules and remove their own module from the list... Thus hiding their injected
module from view when someone enumerates the loaded modules of the affected process.
This is known as memory patching because you would be modifying memory by patching the
PEB. Microsoft’s mitigation for this behavior was to prevent the manual altering of the list
which represents the loaded modules in user-mode — you can still access it for reading the
data in user-mode though and you can still patch the memory from kernel-mode.

This article will be split up into two different sections: theory and user-mode practical.

Theoretical

117

https://ntopcode.wordpress.com/2018/02/26/anatomy-of-the-process-environment-block-peb-windows-internals/

We're going to take a look at the Thread Environment Block (TEB) structure using WinDbg.
Since the TEB structure is available in user-mode, and used by user-mode Windows

components such as NTDLL and KERNEL32, we won’t require kernel-debugging to query
about the structure.

Bear in mind that you will need to have your symbols correctly setup otherwise you will fail
with the next upcoming steps, please see the following URL: https://msdn.microsoft.com/en-
us/library/windows/desktop/ee416588(v=vs.85).aspx

We’'ll start by opening up WinDbg — I'll be opening up the 64-bit version.

Fr B Nioe Drbug Wiedow Fop

Lailiald Spbnbeace Prec 00 Thod O SiW D00 LA WM

WinDbg default view.

Now we’ll open up notepad.exe. Once it is open, we can attach to notepad.exe in WinDbg by

going to File -> Attach to a Process -> notepad.exe. Alternatively, you can use the default
hot-key which should be F6.

File Open Source File... Cirl+ 0

i Cless Curran 'Wisslew

Attaching to a process via WinDbg. 1/2

B Unbitied - Pobepad] ¥
File Edt Foomet iew Help

217

https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx

(®) System onder By ID (") By Executable

Process [D:

111444

] Noninvasive

Cancel Help L

Attaching to a process via WinDbg. 2/2

After doing this, the WinDbg command window will be displayed. The command window is
the work-space we will have to enter commands at our own discretion to get back various
desired results. For example, if we wish to manipulate something, or query information about
something, we can do this with a command. WinDbg has a whole wide-range of commands
available and you can learn more about that here: http://windbg.info/doc/1-common-
cmds.html

We’'ll be using the dt instruction. “dt” stands for “Display Type” and can be used to display
information about a specific data-type, including structures. In our case, it is more than
appropriate because it supports structures and we need to find out information about the
TEB structure.

We can use the following instruction to query information about the TEB structure.

dt ntdll!_TEB

3/17

http://windbg.info/doc/1-common-cmds.html

(2cb4 .dd8): Break instruction exception — codes 0000003 (first chance)
ntdll!DbgBreakPoint :

int 3
;003 dt mtdll|_TEE
FO=000 HLliD - _NT_TIE
+02038 EnvironmentPointer © Ptréd Void
+0x040 ClientId . _CLIENHT_ID

+02050 ActiveRpcHandle - Ptred Void

+0x058 ThreadlocalStoragePointer @ Ptréd Void
+0x060 ProcessEnvironmentElock : PtrbEd _FEB
+0x=068 LastErrorValue - UintdB

+0x06c CountOflwnedCriticalSections Tinkt 4B
+0x070 CsrClientThread : Ptrid Void

+0x=078 Wind?ThreadInfo : Ptred Void

+0x080 UserllReserved [26] Tint4E
+0xl=8 UserReserwed - [5] UintdB
+0=100 WOW3Z2Reserved - Ptred Void
+0x108 Currentlocale Uint4B

+0xl0c FpSoftwvareStatusRegister | UintdB

+0x110 RessrvedForDebuggerlnstrumentation : [16] Ptréd Void
+0x190 Sy=tenReservedl [30] Pered Void

+0x280 PlaceholderCompatibilityHode : Char

+0x281 PlaceholderReserved : [11] Char

+0x28c ProxiedProcessId UintdB

+0x8290 _dctivationStack : _ACTIVATION_COHNTEXT STACK

+0x2b8 Working(nBehalfTicket : [8] UChar

+0x2cl EzmceptionCods IntdB

+0x2cd Paddingl : [4] UChar

+lx2ck ActivationContextStackPointer : Ptred _ACTIVATION _CONTEXT_STACK
+0x2d0 InstrumentationCallbackSp @ UintSB

+0x2d8 InstrumentationCallbackPreviousPc : Uint8E

+0x2el InstrumentationCallbackPreviousSp @ Uint8B

+0x2e8 TeFsContext TintdBE

+lx2ec Instrunentat:DnCalLhaﬂlesablad : UChax

+lx2ed Paddingl : [3] UChar

+0x2i0 GdiTebBatch _GDI_TEB_BATCH
+0x27d8 RealClientld . _CLIENHT ID
+0x7e8 GdiCachedProceseHandle : Ptréd Void
+0r7i0 CdiClientPID : UintdB

+0x7f4 GdiClientTID - UintdB

+0x7f8 GdiThreadLocallnfo : Ptred Void
+0x300 Wind2ClientInfo - [62] Uint8E

+0x9f0 glDispatchTable [233] Ptred Voad
+0x1138 glRessrvedl [29] DintBB
+0x1220 glReserved? : Ptred Void
+0x1228 glSectionlnfo : Ptred Voad
+0%1230 glSection . Ptréd Void
+0x1238 glTable : Ptred Void
+0x1240 glCurrentRC : Ptred Voad
+0%1248 glContext . Ptréed Void
+0x1250 LastStatusVWaluse | UintdB

+021254 Padding? : [4] UChar

+0x1258 StatlcUnlcndeStrzng o _ORICODE_STRING
+0xl1268 Ebat::ﬂnlcnds&uffem : [261] Wchar

+0x21472 Paddingl [6] UChar
+0x1478 DeallncatzunSLack . Ptrad Void
+0x1480 TlsSlots [64] Ptred Yoaud
+021680 TlsLink= : _LIEH;EHTR?
+0x1690 Vdm . Ptres Void
+0x1698 ReservedForHtRpc : Ptred Void
+lxzléal DbgSsReserved o [2] Peréd Void
et Tl T T e o T o B o ol I T e e @ T

WinDbg command (dt) for the _ TEB structure.

We can see already that there are many fields of the structure, so many fields that they all
don’t fit on the singular image view. However, if we look towards the very top of the structure,

we’ll find the Process Environment Block'’s field.

4/17

{2chbd . d48): Break instruction exception - code 80000003 {(first chance) A
ntdlllDngreakalnt

int 3

TEOOT o _HT_TIE
+0x038 EnvirocnmentPointer : Ptréd Void
+0x040 ClientId : _CLIENT_ID
+DHD5D Actlchchandlc : Prrid Fnid

rtrod4 FPEB

+DHDEE CuuntOEDwnedCrltlcaLEectluns ; UintdB
+0x=070 CsrCllcntThrcnd : Ftr64 Fnld

S ATA RT T s

Highlighting the ProcessEnvironmentBlock field of the _TEB structure.

We can see that WinDbg is labelling the data-type for the field as “Ptr64 _PEB”. This simply

means that the data-type is a pointer to the PEB structure (PPEB). Since we are debugging

a 64-bit compiled program (notepad.exe since our OS architecture is 64-bit), the addresses

are 8 bytes instead of 4 bytes like on a 32-bit environment, which is why “64” is appended to
the “Ptr”.

We can view the fields of the PEB structure with the following WinDbg command.

dt ntdll!_PEB

ln:nnn |dt ntdll!_PEH

5/17

0-007> dt ntdll!_PEE
+0x000 Inheritediddre=sz=Spa
+0=001 ReadImageFileEzxeclp
+0x002 BeingDebugged
+0=003% BitField
+0x003 ImagelseslargePages

+0x003 I=ProtectedProcess

+0=x003 I=ImagelDynamicallvyR
+0x003 SkipPatchinglseri2F
+0=003 I=PackagedProcess
+0x003 IsAppContainsr
+0=003% IsProtectedProcessL
+0x003 IslongPathiwvareProc
+0=x004 Paddingl :
+0=x008 Mutant
+0x010 ImageBazsiddres=s -
+0=x01% Ldxr -
+02020 ProcessParansters
+0=028 SubSvstenlata
+0x030 ProcmssH=ap
+0=038 FastPebLock
+0x040 AtlThunkSListPtr
+0x048 IFEQKey :
+0=050 CrossProcessFlags
+0=x050 Processlnlob
+0=050 Processlnitializing
+0x050 ProcesslsingVEH
+0x050 FProcessl=ingVCH
+0x050 ProcesslUsingFTH
+0x050 ProcessPreviou=slvyTh
+0=x050 ProcessCurrentlyThr
+0=x050 ReszervedBit=0
+0=054 Paddingl :
+0x058 Kern=lCallbackTable
+0=058 UszerSharedInfoPtr
+0x060 SystemReserved
+0x064 AtlThunkSLi=tPtr32
+0=x068 ApiSetHap
+0x070 Tl=Expan=ionCounter
+0=074 Padding?
+0x078 Tl=Bitmap
+0x080 TlsBitmapBit= :
+0x08E ReadOnlySharedMemor
+0=090 SharedData
+0=x098 ReadOnlyStaticServe
+0xlal An=i1CodeFagelData
+0x0al CemCodePagelata
+0=20b0 TnicodeCaseTablaelat

+0x0bE8 HumberOfProcessors

+0x0be HtGlobalFlag
+0xlcl CriticalSectionTime

+0x0cE HeapSegmnentReserve

+0x0d0 HeapSegmnentCommit
+0x0dE HeapDeCommitTotalFr
+0xlel HeapDeComnmnitFresElao
+0x0ef HumberOfHeaps
+0x0me MaxinumNunberOf Heap
+0x0f0 ProcessHeap=
+0x0f8 GdiSharedHandleTabl
+0x100 ProcessStarterHelpe
+0x108 GdiDCAttributelist
+0xl0c Padding3 :
+0x110 LoaderLock
+0x118 OSHajorVersion
+0xllc OSHinorVersion
el 20 MSRid 1AM m ey

ce . UChar
tions : UChar
UChar

: UChar

. Pos 0, 1 Bat

Po= 1. 1 Bit

elocated : Pos 2. 1 Bit

orvarders : Po= 3. 1 Bit
Po= 4, 1 Bit

- Po= 5, 1 Bit

ight : Po= 6. 1 Bit
ess . Pos 7. 1 Bit
[4] UChar

: Ptrid Void

Ptred Void

: Ptred _PEE_LDR_DATA

Ptréd4 _RTL_USER_PROCESS_PARAMETERS

. Ptred Void

Ftred Void

: Ptred4 _RTL_CRITICAIL SECTION
- Ptred _SLIST_HEADER
: Ptred Void

Uint 4B

- Po= 0, 1 Bit

 Poz 1, 1 Bat
Pos 2. 1 Bit
: Pos 3. 1 Bit
- Pos 4. 1 Bat

rottled : Po= 5. 1 Bit
ottled : Po= 6. 1 Bit

" Po= 7. 25 Bits

[4] UChazr
: Ptred Veid
Ptr6d Void

. UintdE

Oint4B

. Ptr6d Void

- Tint 4B
[4] UChazr

. Ptréd Void

[2] Tintd4B
vBase @ Ptred Void

. Ptred Void

rData : Ptred Ptréd Void
Ftr6d Void

. Ptred Void

a : Ptred Void

Tint4B

TintdB

out ;. _LARGE INTEGER
Tint8B

Mint 8B

eceThreshold : Tint3E

ckThreshold : Uint8E

- Tint4B

= Tint 4B

- Ptrod Ptrod Void

e . Ptred Voad
r : Ptred Void
;. Uint4B
[4] UChar

: Ptred4 _RETL_CRITICAL SECTIOH
: UintdE
- Tint4B
- TTamtk PR

WinDbg command (dt) for the _PEB structure.

The WinDbg output is below.

6/17

0:007> dt ntdll!_PEB

+0x000 InheritedAddressSpace : UChar

+0x001 ReadImageFileExecOptions : UChar

+0x002 BeingDebugged : UChar

+0x003 BitField : UChar

+0x003 ImageUseslLargePages : Pos 0, 1 Bit

+0x003 IsProtectedProcess : Pos 1, 1 Bit

+0x003 IsImageDynamicallyRelocated : Pos 2, 1 Bit
+0x003 SkipPatchingUser32Forwarders : Pos 3, 1 Bit
+0x003 IsPackagedProcess : Pos 4, 1 Bit

+0x003 IsAppContainer : Pos 5, 1 Bit

+0x003 IsProtectedProcessLight : Pos 6, 1 Bit
+0x003 IsLongPathAwareProcess : Pos 7, 1 Bit
+0x004 Padding® : [4] UChar

+0x008 Mutant : Ptr64 Void

+0x010 ImageBaseAddress : Ptr64 Void

+0x018 Ldr : Ptr64 _PEB_LDR_DATA

+0Xx020 ProcessParameters : Ptr64 _RTL_USER_PROCESS_PARAMETERS
+0x028 SubSystemData : Ptr64 Void

+0x030 ProcessHeap : Ptr64 Void

+0x038 FastPebLock : Ptr64 _RTL_CRITICAL_SECTION
+0x040 AtlThunkSListPtr : Ptr64 _SLIST_HEADER
+0x048 IFEOKey : Ptr64 Void

+0x050 CrossProcessFlags : Uint4B

+0x050 ProcessInJob : Pos 0, 1 Bit

+0x050 ProcessInitializing : Pos 1, 1 Bit

+0x050 ProcessUsingVEH : Pos 2, 1 Bit

+0x050 ProcessUsingVCH : Pos 3, 1 Bit

+0x050 ProcessUsingFTH : Pos 4, 1 Bit

+0x050 ProcessPreviouslyThrottled : Pos 5, 1 Bit
+0x050 ProcessCurrentlyThrottled : Pos 6, 1 Bit
+0x050 ReservedBits® : Pos 7, 25 Bits

+0x054 Paddingl : [4] UChar

+0x058 KernelCallbackTable : Ptr64 Void

+0x058 UserSharedInfoPtr : Ptr64 Void

+0x060 SystemReserved : Uint4B

+0x064 AtlThunkSListPtr32 : Uint4B

+0x068 ApiSetMap : Ptr64 Void

+0x070 TlsExpansionCounter : Uint4B

+0x074 Padding2 : [4] UChar

+0x078 TlsBitmap : Ptr64 Void

+0x080 TlsBitmapBits : [2] Uint4B

+0x088 ReadOnlySharedMemoryBase : Ptr64 Void
+0x090 SharedData : Ptr64 Void

+0x098 ReadOnlyStaticServerData : Ptr64 Ptr64 Void
+0x0a@ AnsiCodePageData : Ptr64 Void

+0x0a8 OemCodePageData : Ptr64 Void

+0x0bO UnicodeCaseTableData : Ptr64 Void

+0Xx0b8 NumberOfProcessors : Uint4B

+0x0bc NtGlobalFlag : Uint4B

+0x0cO CriticalSectionTimeout : _LARGE_INTEGER
+0x0c8 HeapSegmentReserve : Uint8B

+0x0d0 HeapSegmentCommit : Uint8B

+0x0d8 HeapDeCommitTotalFreeThreshold : Uint8B
+0x0e0® HeapDeCommitFreeBlockThreshold : Uint8B

717

+0x0e8
+0x0ec
+0x0f0
+Ox0f8
+0x100
+0x108
+0x10c
+0x110
+0x118
+0x11c
+0x120
+0x122
+0x124
+0x128
+0x12c
+0x130
+0x134
+0x138
+0x140
+0x230
+0x238
+0x240
+0x2c0
+0x2c4
+0x2c8
+0x2d0
+0x2d8
+0x2e0
+0x2e8
+0x2f8
+0x300
+0x308
+0x310
+0x318
+0x320
+0x328
+0x338
+0x340
+0x350
+0x358
+0x360
+0x368
+0x370
+0x378
+0Xx378
+0x378
+0x378
+0x378
+0x37cC
+0x380
+0x388
+0x390
+0x3a0
+0x7a0
+0x7a8

NumberOfHeaps : Uint4B
MaximumNumberOfHeaps : Uint4B
ProcessHeaps : Ptr64 Ptr64 Void
GdiSharedHandleTable : Ptr64 Void
ProcessStarterHelper : Ptr64 Void
GdiDCAttributelList : Uint4B

Padding3 : [4] UChar

LoaderLock : Ptr64 _RTL_CRITICAL_SECTION
OSMajorVersion : Uint4B

OSMinorVersion : Uint4B

OSBuildNumber : Uint2B

0SCSDVersion : Uint2B

OSPlatformId : Uint4B

ImageSubsystem : Uint4B
ImageSubsystemMajorVersion : Uint4B
ImageSubsystemMinorVersion : Uint4B
Padding4 : [4] UChar
ActiveProcessAffinityMask : Uint8B
GdiHandleBuffer : [60] Uint4B
PostProcessInitRoutine : Ptr64 void
TlsExpansionBitmap : Ptr64 Void
TlsExpansionBitmapBits : [32] Uint4B
SessionId : Uint4B

Padding5 : [4] UChar

AppCompatFlags : _ULARGE_INTEGER
AppCompatFlagsUser : _ULARGE_INTEGER
pShimData : Ptr64 Void

AppCompatInfo : Ptr64 Void

CSDVersion : _UNICODE_STRING
ActivationContextData : Ptr64 _ACTIVATION_CONTEXT_DATA
ProcessAssemblyStorageMap : Ptr64 _ASSEMBLY_STORAGE_MAP
SystemDefaultActivationContextData : Ptr64 _ACTIVATION_CONTEXT_DATA
SystemAssemblyStorageMap : Ptr64 _ASSEMBLY_STORAGE_MAP
MinimumStackCommit : Uint8B

FlsCallback : Ptr64 _FLS_CALLBACK_INFO
FlsListHead : _LIST_ENTRY

FlsBitmap : Ptré64 Void

FlsBitmapBits : [4] Uint4B

FlsHighIndex : Uint4B
WerRegistrationData : Ptr64 Void
WerShipAssertPtr : Ptr64 Void

pUnused : Ptr64 Void

pImageHeaderHash : Ptr64 Void
TracingFlags : Uint4B

HeapTracingEnabled : Pos 0, 1 Bit
CritSecTracingEnabled : Pos 1, 1 Bit
LibLoaderTracingEnabled : Pos 2, 1 Bit
SpareTracingBits : Pos 3, 29 Bits
Padding6 : [4] UChar
CsrServerReadOnlySharedMemoryBase : Uint8B
TppWorkerpListLock : Uint8B
TppwWorkerpList : _LIST_ENTRY
WaitOnAddressHashTable : [128] Ptr64 Void
TelemetryCoverageHeader : Ptr64 Void
CloudFileFlags : Uint4B

8/17

As we can see, there’s a lot of fields for the PEB structure. We’ll only be focusing on a select
few of them during the practical sections though.

Before we can continue, we need to briefly talk about how the Process Environment Block is
actually found. It’s located at FS:[0x30] in the Thread Environment Block/Thread Information
Block for 32-bit processes, and it's located at GS:[0x60] for 64-bit processes.

To start off, the third field of the PEB structure (“BeingDebugged”) can be read to determine if
the current process is attached to via a debugger — this is one vector which is commonly
closed by analysts who are debugging malicious software, because malicious software tends
to keep a close-eye out for debuggers and other analysis tools to make things more difficult
for malware analysts. There’s a routine from the Win32 API called IsDebuggerPresent
(KERNEL32) and the routine works by checking the BeingDebugged field of the PEB
structure. We can validate this by reverse-engineering kernel32.dll ourselves.

BOOL _ stdcall IsDebuggerPresentStubi)
{

return IsDebuggerPresent(};

?

IDA pseudo-code for IsDebuggerPresentStub (KERNEL32 — Windows 8+).

As we can see, kernel32.dll has a routine named IsDebuggerPresentStub which calls
IsDebuggerPresent. This is because the environment I'm getting these images from is
Windows 10 64-bit, and Microsoft moved to using KernelBase.dll (introduced starting
Windows 8). However, for backwards-compatibility, kernel32.dll is still pushed for usage by
their documentation — and if they had dropped support for it then they would have to have
moved more than they have across to a new module project, and there’d have been a lot of
incompatible software for Windows 8+ at the time.

Therefore, we need to take a look at KernelBase.dll.

: BOOL _ stdcall IsDebuggerPresent()
public IsDebuggerPresent

IsDebuggerPresent proc near CODE XREF:
: DATA XREF:
mov rax, gs:66n |
Mmouzx eax, byte ptr [rax+2]
retn

IsDebuggerPresent endp

Disassembly for IsDebuggerPresent (KERNEL32 / KERNELBASE).
Perfect! KernelBase.dll has an exported routine named IsDebuggerPresent. We’re going to
debunk what the above disassembly is telling us.

9/17

1. The address of the Process Environment Block is being moved into the RAX register.
Since we're looking at the 64-bit compiled version of KernelBase.dll, 64-bit registers
are being used. The Process Environment Block is located at + 0x60 for 64-bit
processes.

2. The value from the BeingDebugged field under the Process Environment Block is being

extracted and put into the EAX register. The data-type for the BeingDebugged field is
UCHAR (which is one byte), and it’s offset is 0x002 — the first field of the PEB structure
is located at 0x000 which means the third field (which is the BeingDebugged field) is
located +2 bytes from this address. Since the RAX register is holding the address to
the Process Environment Block, (RAX + 2) is performed to reach the address of the
BeingDebugged field.

3. Returning with the RETN instruction. Since the value for the BeingDebugged field of
the PEB structure is held within the EAX register, the caller of the routine is going to
return the value stored within the BeingDebugged field.

A routine like IsDebuggerPresent (KERNEL32 / KERNELBASE) might be an obvious sign for
a malware analyst who is taking a look at the API calls being made by a sample therefore
some malware samples will manually access the PEB structure to check — doing this is
stealthier and usually less-expected.

The next fields we’re going to briefly talk about are the IsProtectedProcess and
IsProtectedProcessLight fields of the Process Environment Block.

These fields can be used to determine if the current process is “protected” or not, hence the
“ProtectedProcess” key-word in the field names. In Windows, there’s multiple process
protection mechanisms although the former (non-Light variant) has been around a lot longer
than the Process Protection Light (PPL) variant. Standard process protection mechanism in
Windows has been around since Windows Vista, however the PPL feature came into play
starting Windows 8. Microsoft use these mechanisms to protect their own System processes
from being abused by malicious software or forcefully shut-down by a third-party source
(because for some Windows processes this can cause the system to bug-check/improperly
function). If we can access these fields within the Process Environment Block, then we can
check if the current process is protected or not by Windows. All of this is enforced from
kernel-mode by the Windows Kernel using the undocumented and opaque EPROCESS
structure, and you cannot write to these fields in the PEB structure and have the changes
take effect because it won’t update the EPROCESS structure for the current process.

The standard process protection mechanism is used by Windows system processes. This
mechanism is enforced from within the Windows Kernel and it’'s not supposed to be used by
third-parties, and it helps prevent system processes from being exploited by attackers (or
forcefully shut-down — the Operating System cannot function properly without it’s critical
user-mode components). On top of this, Windows will set the state of various system
processes to “critical”’, and this is flag-based and will cause the system to be forcefully
crashed (via a bug-check) if the “critical” processes become terminated. There are two

10/17

different implementations for the “critical” state: critical processes and critical threads. Setting
a process as critical will cause the bug-check once the process has been terminated, and
setting a thread as critical will cause the bug-check once the thread has been terminated.
Usually, the former is more appropriate because threads come and go regularly (e.g. spawn
a new thread to handle an operation simultaneously and then the thread will be terminated
once it returns back it's status from the operation). Windows does not set “threads” as critical
as far as | am aware, although it will set specific processes as critical (processes like
csrss.exe).

We’'re going to take a look at how the process protection mechanism which is built-into
Windows actually works very briefly using Interactive Disassembler and WinDbg.

We can easily check using the following routines.

1. PslsProtectedProcess (NTOSKRNL)
2. PslsProtectedProcessLight (NTOSKRNL)

Both of the above routines are undocumented but they are still exported by the Windows
Kernel.

public PsIsProtectedProcess

PsIsProtectedProcess proc nNear 2 DATA MREF: _pdata:@00080001483A2A68) 0
|t95t byte Etr [Fcx+6CANR], ¥ E1

mou eax,
setnbe al
retn

PsIsProtectedProcess endp

Disassembly for PslsProtectedProcess (NTOSKRNL).

Looking at the disassembly of PsIsProtectedProcess, we can see that the TEST instruction
is being used. The TEST instruction is used for a “bitwise operation”. However, we can also
see that [RCX+6CAh] is the target. The PslIsProtectedProcess routine takes in one
parameter only and it returns a BOOLEAN (UCHAR) — the parameter’s data-type should be
a pointer to the EPROCESS structure for the target process being checked on. This tells us
that the value stored in the RCX register will be the address of the PEPROCESS
(EPROCESS¥) for the target process, and it's accessing the structure to read the value
stored under an unknown field which symbolises if the process is or is not protected. The
offset for where the field under the EPROCESS structure is located is 6CAh. This means that
if you add on 0x6CA from the base address of the EPROCESS* for a process, you will land
yourself at the address in which the value being checked in this routine is located at (for this
environment only because the offsets regularly shift around and will vary between
environment — due to patch updates and separate OS versions).

We can check with WinDbg which field is for the OxC6A offset.

11/17

O=bcB Signaturglevel . UChar
U=ztca Protection : _PS_PRDTECTIDNI

T=EECE HangCDunt T Po= b, 4 Bit=
MNerfmh Thest Tmas + - P A A Ba+=

WinDbg command (dt) for the _EPROCESS structure, showing the Protection field.

Nice! The field in the EPROCESS structure which holds data regarding process protection is
named Protection and has a data-type of _PS_PROTECTION (which is a structure) — at-
least for the standard process protection mechanism, we are yet to check on the Light
variant. We can take a look at the _PS_PROTECTION structure with the dt instruction.

+0=x000 Level : MChar

+0=000 Tvpe : Po= 0. 3 Bit=s
+0=000 Audit : Po= 3. 1 Bit
+0=000 Signer : Po= 4., 4 Bits

WinDbg command (dt) for the PS_PROTECTION structure.
Now if we check the disassembly of the PslsProtectedProcessLight routine, we can see if it
uses the same mechanism to query the status.

public PsIsProtectedProcesslLight

PsIsProtectedProcessLight proc near > DATA XREF: .pdata:@0000808140832AR0¢
mou cl, [rcx+6CANR]
Xor eax, eax
and cl, ¢
cmp cl, 1
setz al
retn

PsIsProtectedProcessLight endp

Disassembly for PslsProtectedProcessLight (NTOSKRNL).

It's targeting the Protection field of the EPROCESS structure as well — the same field of the
structure too. The only difference here is that PslsProtectedProcess is and
PslsProtectedProcessLight are doing some different checks.

In the PEB structure, there’s an entry named Ldr which has a data-type of
_PEB_LDR_DATA. Within this structure, we have a field named InMemoryOrderModuleList
which has a data-type of LIST_ENTRY. Double linked lists are very common in Windows
components such as in the Windows Kernel or lower-level user-mode components.

There’s an instruction in WinDbg named !peb which can be used to enumerate data for the
PEB of the currently debugged process. Below is an image of what the output will look like,
focus only on the non-highlighted parts.

12/17

Ldr . InHenoryOrderdodulelist ;

oduls
CWINDOVS svystend 2 notepad exe
SWINDOWSSYSTENI 2 ntdll d11
CWINDONS Systeni2~KERHEL3Z DLL
CSWINDOVS Systend 2~KERNELBASE 411
SWIHDOVS - Systend 2~ ADVAPTZ2 dll
CSSTIHDONS Systend 2 nesvert dll

S WINDOVS~Systemd 2 sechost dll
I THTNMHS S St ew I 2WRRCRTL A11

alnlelnlnlialalyl

WinDbg command (!peb) output.

If we go through the InMemoryOrderModuleList, we can extract each entry and assign to a
pointer of the LDR_DATA_TABLE_ENTRY structure using the CONTAINING_RECORD
macro. Then we could view details about the current module enumerated using the linked
lists... We will do this during the practical code section which is right about now.

We’'re going to be using the PEB for practical use in the next section.

User-Mode

In this section we’re going to be re-writing a few Win32 API routines in user-mode which rely
on the Process Environment Block.

1. GetModuleHandle — using the Ldr field of the PEB structure
2. GetModuleFileName — using the ProcessParameters field of the PEB structure

We need to make sure we’ve declared some structures. Depending on the header files
you’re using, you may not need them. However if you do need them...

13/17

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/mm-bad-pointer

typedef struct _UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
WCHAR *Buffer;

} UNICODE_STRING, PUNICODE_STRING;

typedef const UNICODE_STRING
*PCUNICODE_STRING;

typedef struct _CLIENT_ID {
PVOID UniqueProcess;
PVOID UniqueThread;

} CLIENT_ID, *PCLIENT_ID;

typedef struct _RTL_USER_PROCESS_PARAMETERS {
BYTE Reservedl[16];
PVOID Reserved2[10];
UNICODE_STRING ImagePathName;
UNICODE_STRING CommandLine;
} RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS;

typedef struct _PEB_LDR_DATA {

BYTE Reservedl[8];

PVOID Reserved2[3];

LIST_ENTRY InMemoryOrderModulelList;
} PEB_LDR_DATA, *PPEB_LDR_DATA;

typedef struct _LDR_DATA_TABLE_ENTRY {
PVOID Reservedl[2];
LIST_ENTRY InMemoryOrderLinks;
PVOID Reserved2[2];
PVOID BaseAddress;
PVOID Reserved3[2];
UNICODE_STRING FullDllName;
UNICODE_STRING BaseDllName;
BYTE Reserved4[8];
PVOID Reserved5[3];
#pragma warning(push)
#pragma warning(disable: 4201) // we'll always use the Microsoft compiler
union {
ULONG CheckSum;
PVOID Reserved6;
} DUMMYUNIONNAME;
#pragma warning(pop)
ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

typedef struct _PEB {
BYTE Reservedl[2];
BYTE BeingDebugged;
BYTE Reserved2[1];
PVOID Reserved3[2];
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];

14/17

PVOID AtlThunkSListPtr;
PVOID Reserved5;
ULONG Reserved6;
PVOID Reserved7;
ULONG Reserveds8;
} PEB, *PPEB;

typedef struct _TEB {
NT_TIB NtTib;
PVOID EnvironmentPointer;
CLIENT_ID ClientId;
PVOID ActiveRpcHandle;
PVOID ThreadLocalStoragePointer;
PPEB ProcessEnvironmentBlock;

} TEB, *PTEB;

The next thing you might want is a global definition for NtCurrentPeb(). This isn’t mandatory
but it can be a bit helpful if you'd prefer to type NtCurrentPeb() instead of NtCurrentTeb()-
>ProcessEnvironmentBlock every-time you need to gain access to the PEB. | always
preferred to type NtCurrentPeb() but that’s just me.

#define NtCurrentPeb() \
NtCurrentTeb()->ProcessEnvironmentBlock

What is NtCurrentTeb()?

NtCurrentTeb() is a function which is packed within winnt.h, and it'll return a pointer to the
TEB structure at the correct address of where the TEB is located.

NtCurrentTeb() will change depending on the configuration however for a 32-bit compilation,
it will locate the TEB by using the __readfsdword macro, targeting 0x18 as the location. This
means that the target location is actually FS:[0x18]. For a 64-bit compilation, __readgsqword
will be used and the target location will be different.

GetModuleHandle replacement

15/17

HMODULE GetModuleHandleWrapper (
WCHAR *ModuleName

)

{
PPEB ProcessEnvironmentBlock = NtCurrentPeb();
PPEB_LDR_DATA PebLdrData = { 0 };
PLDR_DATA_TABLE_ENTRY LdrDataTableEntry = { 0@ };
PLIST_ENTRY ModuleList = { 0 },
ForwardLink = { 0 };
if (ProcessEnvironmentBlock)
{
PebLdrData = ProcessEnvironmentBlock->Ldr;
if (PebLdrData)
{
ModuleList = &PebLdrData->InMemoryOrderModulelList;
ForwardLink = ModulelList->Flink;
while (ModulelList != ForwardLink)
{
LdrDataTableEntry = CONTAINING_RECORD(ForwardLink,
LDR_DATA_TABLE_ENTRY,
InMemoryOrderLinks);
if (LdrDataTableEntry)
{
if (LdrDataTableEntry->BaseDl1lName.Buffer)
{
if (!_wcsicmp(LdrDataTableEntry->BaseDl1Name.Buffer,
ModuleName))
{
return (HMODULE)LdrDataTableEntry->BaseAddress;
}
}
}
ForwardLink = ForwardLink->Flink;
}
}
}
return 0,
}

The above routine does the following.

Retrieves the PPEB

Checks if the PPEB could be acquired or not

Enumerates the InMemoryOrderModuleList

Retrieves a pointer to the LDR_DATA_TABLE_ENTRY structure for each entry
Returns the BaseAddress of the module if its a match based on module name buffer
comparison with the parameter passed in

a O~

16/17

GetModuleFileName wrapper

WCHAR *GetModuleFileNameWrapper ()
{

PPEB ProcessEnvironmentBlock = NtCurrentPeb();

if (ProcessEnvironmentBlock)if (ProcessEnvironmentBlock)

{

if (ProcessEnvironmentBlock->ProcessParameters)

{

if (ProcessEnvironmentBlock->ProcessParameters->ImagePathName.Buffer)

{

if (ProcessEnvironmentBlock->ProcessParameters->ImagePathName.Buffer)

{

return ProcessEnvironmentBlock->ProcessParameters-
>ImagePathName.Buffer;

by
}

}

return NULL;
}

The above routine does the following.

1. Retrieves the PPEB (pointer to the PEB)

2. Checks if the PPEB could be acquired or not

3. Checks if it can access the ProcessParameters field

4. Returns the ImagePathName buffer (it's a UNICODE_STRING so the Buffer field is a
wchar_t*)

All of this has been known for an extremely long time now but for those of you which have
only just got into Windows Internals and started studying areas like the Process Environment
Block, this could help clear things up for you quickly and put an end to some confusion.

As always, thanks for reading.

NtOpcode

17/17

