
1/13

Quick Analysis of a Trickbot Sample with NSA's Ghidra
SRE Framework

peppermalware.com/2019/03/quick-analysis-of-trickbot-sample-with.html

This post is not a deep analysis of TrickBot. Here, I did a quick analysis of a TrickBot sample
from early 2019 by using the Ghidra Software Reverse Engineering (SRE) Framework,
developed by the NSA, that was released some hours ago. This is not a deep analysis of
TrickBot, I only wanted to learn a bit about Ghidra and I used this framework to find some
interesting parts of the code of TrickBot that were introduced in the newer versions of the
malware. Hope you enjoy it!

Starting with Ghidra Framework

About Ghidra, when you start the framework, you should create a project and a workspace:

http://www.peppermalware.com/2019/03/quick-analysis-of-trickbot-sample-with.html
https://3.bp.blogspot.com/-y3xLxEVW3rY/XH8XxPUwohI/AAAAAAAAAJQ/A1yAFWQbW-AOnnevVBDPNMs7XTzVQg_dwCLcBGAs/s1600/ghidra_project.png

2/13

Then, we can import files, for example PE files:

Ghidra CodeBrowser

Once PE file is imported, CodeBrowser can be launched:

https://3.bp.blogspot.com/-pScWpKR2vuI/XH8Ywa9C2lI/AAAAAAAAAJg/4_sVuCRV0aMeGSsPGInV6P1j6QLVYSq0wCEwYBhgL/s1600/ghidra_import.png
https://2.bp.blogspot.com/-hIXHsFphcV8/XH8Zoo6bVKI/AAAAAAAAAJo/WGMsXGZqwQAoyqQ9Tin96l4xHWAeRa4XgCEwYBhgL/s1600/ghidra_codebrowser1.png

3/13

Initially, PE headers are parsed but code is not analyzed, the framework asks you if
analyzers should be launched, and what analyzers should be launched. This is the list of
analyzers (they are marked the analyzers that are marked by default):

Once analyzers finish, CodeBrowser interface is like this:

https://4.bp.blogspot.com/-7awSLtgqn_Y/XH8aUK9BhDI/AAAAAAAAAJw/8cwXEco-hA8mqMo2cb8oJm7IJdOBitbYgCLcBGAs/s1600/ghidra_analyzers.png

4/13

Code is fully decompiled and while you browse each function, the decompiled code is
showed in the right window.

Browsing Code

Browsing code is similar to IDA, you can double-click a name to jump there (for example
double-clicking the destination of a call <destination>, would take you to the destination
function). You can move easily to the previous location with Alt+left (equivalent to Esc in IDA)
and next location with Alt+right (equivalent to Ctrl+Enter in IDA).

Other navigation options:

https://1.bp.blogspot.com/-9uqpOARVTtA/XH8cdJW_mKI/AAAAAAAAAJ8/rL43Wz50IT8Pqw5wnmKS3tAPyP5UwtZ-QCLcBGAs/s1600/ghidra_codebrowser2.png

5/13

You can search for text, like IDA Alt+t, however (and I found this an interesting
characteristic), you can select where do you want the text is going to be searched:

https://2.bp.blogspot.com/-dPycbUqge1w/XH8d8P-GQyI/AAAAAAAAAKI/UBFRLxc27I4VLpExIom8gIoRlTQCo3hHwCLcBGAs/s1600/ghidra_codebrowser_navigation.png

6/13

Find TrickBot Config Xor-layer Decryptor

For example, we can try to search for XOR instructions, and we get a list of matches:

https://4.bp.blogspot.com/-bgfpM_tc3Nc/XH8g754PQTI/AAAAAAAAAKg/Vi9HkkPXZ2IXgdB6Nb5y1QN_QQjkGC4bQCLcBGAs/s1600/ghidra_codebrowser_searchtext.png

7/13

In the analyzed sample (a trickbot from early 2019), if we look for XOR instructions, we can
find easily some XOR instructions modifying memory, and one of them belongs to the
function that decrypts the XOR layer of the trickbot config:

https://2.bp.blogspot.com/-rAzGoAMtjng/XH8tN8izeII/AAAAAAAAAL0/5kdv_R42-EkvX5Aq-frh3mQJqMrMlsSyACLcBGAs/s1600/xor_mem.png

8/13

(Btw, as we can see in the image, when you select with the mouse a line in the disassembly
window, the equivalent line is highlighted in the decompiled window).

Using references to find more interesting parts of the code

Once you have located an interesting point in the code, you can show a tree of calls to that
point:

The tree makes easy to follow the incoming or outgoing references to the interesting
function:

https://1.bp.blogspot.com/-OHSpR6waZ2I/XH8tlnptQiI/AAAAAAAAAL8/0_dyHQB4vU4ZEy96eyAmrzZTy5fQy5aqACLcBGAs/s1600/xor_mem.png
https://2.bp.blogspot.com/-Mj3zUDMCb_8/XH8lvWf3rrI/AAAAAAAAALA/exfgTbGCH8Aw-RcOmpLTs-wS4CbzgrHjwCLcBGAs/s1600/ghidra_codebrowser_showcallstree.png

9/13

Additionally, you could highlight (select) back or forward refs to an address in the
disassembly and decompiled windows.

TrickBot ECS signature and Config Xor Decryptor

By using the call trees, we can find easily the functions that decrypts the XOR layer of the
elliptic curve signature or the XOR layer of the TrickBot Config:

In addition, you can open a function graph window, similar to IDA graphs. Here is the XOR
decryptor loop of TrickBot:

https://3.bp.blogspot.com/-34OAKOFLXzg/XH8unZs6qXI/AAAAAAAAAMI/eDSyDxuFdEozcZF_wEaM6blo1-5RuF6HwCLcBGAs/s1600/refs.png
https://3.bp.blogspot.com/-byD-SxoiUzA/XH8wFTNHvxI/AAAAAAAAAMU/Bhwn_P_6gBAGSndrIjyMP5c5X_RlVPuSACLcBGAs/s1600/ecs_config.png

10/13

You can move easily on the graph, and zoom in/out with the mouse wheel:

https://4.bp.blogspot.com/-qTeDdzHqymA/XH8w5bVrylI/AAAAAAAAAMg/cmIn70FuFsAAz1GsB-5DQqMf9XnaminVACLcBGAs/s1600/funcgraph.png

11/13

TrickBot Strings Decryptor

About strings.. All the strings used by the newer versions of TrickBot are encrypted. While
IDA was able to construct a nice table of strings that makes easy to find the decryptor:

https://2.bp.blogspot.com/-67y16FC4-sc/XH8qQDKdZwI/AAAAAAAAALg/kMvNYw5wV7cpWb9YzKx7RdVAUTTRCZ2kwCLcBGAs/s1600/ghidra_codebrowser_func_graph1.png

12/13

Ghidra were not able to identify all the strings and construct a nice table, it is much lesser
intuitive:

Maybe I missed something with Ghidra, but I selected the option Analysis->One shot->Ascii
Strings, and these are the results. This makes difficult, for example, to find strings'
decryptors.

https://2.bp.blogspot.com/-Fe2lDLOy4R4/XH80HeiJ4aI/AAAAAAAAAMs/9xWWznbTcncSFSJdzEZq_-qA750xUiKxACLcBGAs/s1600/ida_strings.png
https://3.bp.blogspot.com/-74xP3H7rWJ4/XH80Tz3ixxI/AAAAAAAAAMw/qQDd6QQHkdA8djRlAShl_K7XKdnB9A15wCLcBGAs/s1600/ghidra_strings.png
https://3.bp.blogspot.com/-t2onwHl9nvQ/XH81rFBzkHI/AAAAAAAAANA/rVh50_N-_2YqUAdh51mAilZpB9QtQj6dgCLcBGAs/s1600/strings_decryptor.png

13/13

Conclussion

in spite of the fact that I really love IDA (and WinDbg), I liked this framework, and I will
continue using it.

