Reversing Ryuk: A Technical Analysis of Ryuk

Ransomware

securityliterate.com/reversing-ryuk-a-technical-analysis-of-ryuk-ransomware/

P

Xor edx, edx

lea rcx, aCmdExeCWmicExe ; "omd.exe fc YWWMIC.exe shadowcopy delete”...
call csikinExec_1

Xor edx, edx

lea rcx, almdExeCVssadmi ; "omd.exe /c \"vssadmin.exe Delete Shadow™...
call csthinExec_1

Xor edx, edx

lea rcx, almdExeCBcdedit ; "omd.exe fc YWbodedit fset {default} rec”...
call cs:WinExec_1

Xor edx, edx

lea rcx, almdExeCBootsta ; "omd.exe /c “\"bootstatuspolicy ignoreall”...
call cs:kinExec_1

call cs:GetlogicalDrives @

Mo esi, eax

Mo ebx, rildd

April 19, 2020

1
Ryuk has been in operation since mid-2018 and is still one of the key ransomware variants
operating in 2020. The threat actors behind Ryuk have been known to target a wide range of
industries, and they typically demand substantial ransom amounts.

Lately, given the ongoing COVID-19 situation, the actors behind Ryuk have been taking
advantage of this and targeting the most vulnerable — hospitals and the health care industry.
In light of this (and because | am personally interested in how Ryuk functions), here is a
technical analysis of Ryuk’s key functionalities.

Note: The Ryuk sample | used for this analysis is:

feafc5f8e77a3982a47158384e20dffee4753c20

Carbon Copies

The first thing Ryuk does upon execution is the creation of two “hidden” executable files that
are placed on the desktop or one of the user’s temporary directories, depending on where

the Ryuk sample was executed from.

1/11

https://securityliterate.com/reversing-ryuk-a-technical-analysis-of-ryuk-ransomware/

gavrulQV IS VyzRIEHNTI S rytk exe

executables.

These executables are actually copies of the primary Ryuk executable, and seem to be used
for a few different purposes — most notably persistence and spawning additional instances of
itself for more threads and faster encryption of the filesystem.

4 07 ryuk-feafc5f8e77a3982a... 2780 2109 7635kB/s 94.95MB
= VyzhiRHNflan.exe 3496 93.4 ME Ryuk child
[gqvrulQVTlan.exe 3112 1865 17344 kB.. 93.5 MB

processes (executables) running.

Ryuk is extremely fast in its encryption process. This is possible due to the way Ryuk
behaves in regards to threads. The two executables and associated processes that were
created, along with the process injection techniques | will outline below, all serve as hosts for
multi-threaded encryption. More on this later.

Process Injection

After the creation of its child processes, Ryuk will attempt to inject itself into additional
processes running on the victim’s system.

Ryuk utilizes the Windows functions Create ToolHelp32Snapshot, Process32First, and
Process32Next in order to enumerate processes running on the victim’s system and search
for a feasible target process for injection:

2/11

call EreitETaolhélpjzénap5h0;

mov rl4, rax
cmp rax, BFFFFFFFFFFFFFFFFh

jz loc_148003228
| 1

rdx, [rsp+2Deh+pe] ; lppe
rcx, rax
Process32First
eax, eax
II’.‘IC_l-‘lBB'BSI‘l 8

;3 hSnapshot

Y

rcx, rild

2ax, sax

loc_l4ee@321F

rdx, [rsp+2D8hpe] ; lppe
i hSnapshot
Process32Nexth

1

lea rsi, [rbx+1F8h]

L

Ryuk enumerating system processes.

Ryuk is only able to inject code into processes that are running at the same (or lower)
privilege level as the Ryuk sample itself. So if Ryuk is running as Administrator or System

LK

Jull s =]

xor
call
mow
xor
mow
call

Mo

loc_1488@3825:

; dwErrCode

BCH, BCK

cs:S5etLastError

r8d, [rspt+2DBh+pe.th32ProcessID] ; dwProcessId
edx, edx ; bInheritHandle

ecx, 1FFFFFh : dwbesirediccess
csi0penProcess

rl2, rax

(hopefully not the case!) it will be able to inject into System-level processes.

An important note is that Ryuk will not inject into csrss.exe, explorer.exe, or Isass.exe. This
safeguard is likely used to prevent system instability, but this is just an educated guess.

(Please let me know if you have additional information about this.)

3/11

] e 5=

lea rdx, alsrssExe @ ; "csrss.exe”
mov rcx, rdi ; Stringl

call VCSCmp

test eax, eax

jz short loc_13F4E77C2

J

il e =

lea rdx, aExplorerExe_© ; "explorer.exe”
mow rcx, rdi 3 Stringl

call wcscmp

test eax, eax

jz short loc_13F4E77C2

e =

lea rdx, alsaasExe @ ; "lsaas.exe”
mov rcx, rdi ; Stringl

call WCSCcmp

test eax, eax

jz short loc_13F4E77C2

safeguards.

After enumeration and selection of a target process, Ryuk utilizes a typical process injection

technique:

First, the OpenProcess and GetModuleHandleA functions are called in order to get a handle

to the target process.

E I

Ryuk process-injection

feafcsT8er77a3982a47158384e20dffee4753c20. 000000013F4EL7FO
call qgword ptr ds:[<&0penProcess>]
mov rdi,rax
test rax,rax

jne feafcs5T8e77a3982a47158384e20dffee4753¢c20.13F4E1805

Ryuk getting a handle to the target process.

feafcsT8e77a3982a47158384e20dffee4753¢c20. 000000012F4E1B0O5
XOr ecx,ecx
call gqword ptr ds:[<&GetModuleHandleAx]
mov rsi,rax
Test rax,rax

je feafcs5TBe77a3982a47158384e20dffee4753c20.13F4E17FE

4/11

VirtualAllocEXx is then called in order to allocate memory within the address space of the
target process, followed by WriteProcessMemory, which is called in order to write code into
this new memory space. Finally, CreateRemoteThread is called to create a new thread in the
context of the victim process, which will subsequently execute the injected code.

¥
feafcsfBe77a3982a47158384e20dFFeed753c20. DO0000013F4ELET 3
and gword ptr ss:|frsp+c&],c
lea —am.qwurﬂ ptr JJ.[rJ: &5
mov rs,rbp
mov gword per ss:espr2of,rax
mov r8,rsi

mov rdx,rbx
mov rox,rdi
call qword ptr ds:[<&WriteProcessMemorys]
Htest sax j 2ax
jne feafcsTBerva39Bza47158384e20dTFee4753C20. 13F4ELB9E

feafcsfBe77a3982a471583 8482 I:Icl feed753c20. 00000001 3F4ELEDE feafcsTEe
and gword ptr ss:frsp+30],0 lea ebx,
lea r9,gword ptr u:I...[13FiIE?024] jmp feaf
and dword ptr ss:frsp+2&],0 | —

xor red,rsd
wor edx,edx
mov qeord prr ss:|jrspr2of, rbx
mov rcx, rdl
mEEN gword ptr ds:[<&CreatefemoteThreads]
test rax,rax
jne TeafcsTBer7a3o82a47158384e20dTee4753C20. 13F4E1BF5

[
Ryuk writing memory and creating a thread.

This injection process can also be seen in an excerpt from API Monitor:

FiF 1X5220 TP 1 feafcSfBeTTa3982a... OpenProcess [PROCESS_ALL_ACCESS, FALSE, 1172 CaD0000000000....
TIB 1ES2ETIEPM 1 feafcSfBeT7a3982a... VirtualfllocEs [CxD0O00000000001 5 '« 1454080, MEM AKIL

779 125229718 Pm |1] IE!-I
780 125220718 PM 1 feafcSiBeT7a3082a.., Creal teThread | 0x00000000000001 54 .0, C00000000000....
781 125220718 PM 1 KERMELEASE.di } T dEx | . THREAD ALL ACCESS , 0aD000D.... STATUS SUCCESS
Ta2 12520TIBPM 1 KERMELEASE.dN L HaResumeThread [DoxDODO0O00000001 58, 1 | STATUS_SLICCESS

Ryuk process injection — APl Monitor.

The injected code is actually just another copy of the original Ryuk process. (See my post on
unpacking Ryuk if you are interested in learning one method of leveraging this process
injection technique in order to unpack Ryuk.)

When | ran Ryuk in my Windows VM, code was injected into dwm.exe, taskhost.exe, and
even the VirtualBox Tray process (VBoxTray.exe). Interestingly, two of these processes
crashed a few minutes after injection, so it appears that Ryuk can cause some incidental
system instability.

5/11

https://securityliterate.com/unpacking-ryuk

L VirtualBox Guest Additions Tray Application

ﬁ VirtualBox Guest Additions Tray Application has stopped working
K‘__.

Windows can check enline for a solution to the problem the next time you go online.

< Close the program

< Check online for a solution later and close the program

=)

. Hide problem details

Problem signature: -
Problem Event Mame: APPCRASH I
Application Name: VBoxTray.exe =
Application Version: 6.1.4.36177
Application Timestamp: S5edclbf5 |
Fault Module Name: StackHash_2264
Fault Module Version: 0.0.00
Fault Module Timestamp: 00000000
Exception Code: c0000005

|_Exception Offset: 00000001 3fF764d1 E

injection crashes VBoxTray.exe.

Command Execution

Ryuk code

Ryuk leverages Windows command line tools for most of its supporting functionalities. Some
of these commands can be seen in the below code:

FIE

Xor edx, edx

lea rcx, almdExeCWmicExe ; "cmd.exe fc W'WMIC.exe shadowcopy delete”..
call cs:iWinExec_1

xor edx, edx

lea rcx, almdExeCVssadmi ; "omd.exe /c \"vssadmin.exe Delete Shadow™...
call cs:kinExec_1

Xor edw, edx

lea rcx, almdExeCBcdedit ; "omd.exe fc Wbodedit /fset {default} rec”...
call cs:WinExec_1

Kor edx, edx

lea rcx, alCmdExeCBootsta ; "omd.exe /c “YWbootstatuspolicy ignoreall”...
call cs:ikinExec_1

call cs:GetlogicalDrives @

mow esl, eax

Mo ebx, rlad

Ryuk executing

various command-line commands.
During my analysis, the following command were run by Ryuk:

net.exe stop "audioendpointbuilder" /y

6/11

This command kills the “audio endpoint builder” Windows service, which causes audio to
malfunction on the victim system. | am still unsure why Ryuk executes this command, and |
have no good suggestions.. Other than perhaps to infuriate the end user.

net.exe stop "samss" /y

Stops the Security Accounts Manager. This technique may be used to prevent security alerts
being triggered and sent to a SIEM.

cmd.exe /c "WMIC.exe shadowcopy delete"

This command clears the Windows Volume Shadow Copies so that they cannot be used to
recover files.

cmd.exe /c "vssadmin.exe Delete Shadows /all /quiet"

This command is used as another method of removing shadow copies of files.

cmd.exe /c "bcdedit /set {default} recoveryenabled No & bcdedit /set {default}"
cmd.exe /c "bootstatuspolicy ignoreallfailures"

These commands are used to disable Windows error recovery and associated boot options
so it is more difficult to recover the system.

icacls "C:*" /grant Everyone:F /T /C /Q
icacls "D:*" /grant Everyone:F /T /C /Q
icacls "Z:*" /grant Everyone:F /T /C /Q

These commands attempt to assign the group Everyone full permissions to the C, D,and Z
drives. This is used before the encryption process begins, to ensure Ryuk has permissions to
modify files.

cmd.exe " /C REG ADD
"HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" /v "EV" /t REG_SZ
/d "<path_to_Ryuk>"

This command is used to add Registry persistence. Essentially, this will ensure the Ryuk
sample will run again upon system bootup. Ryuk will only encrypt files once, however.
Speaking of that... on to encryption!

Encryption — A Multi-Threaded Operation

The file encryption process runs once the above command line commands have been
executed. As previously mentioned, Ryuk encrypts the filesystem using multiple threads,
spread amongst the primary Ryuk executable, the secondary executables, and the
processes Ryuk was able to inject into. Ryuk creates a new thread for each file being
encrypted:

7/11

" VyzhiRHNflan.exe (3496) Properties = eE ==

General | Statistics | Performance | Threads | Token I Modules
Memory I Environment | Handles | Disk and Metwaork I Comment
Hide unnamed handles

Type . Mame Handle i

Thread VyzhifHMflan.exe (3498): 381432 0x10c L4

Thread VyzhiRHMNflan.exe (3496): 351436 0x110

Thread VyzhiRHMflan.exe (3496): 862164 Ox114

Thread VyzhiRHMNflan.exe (3456): 351440 Oxlic

Thread VyzhiRHMflan. exe (3996): 381444 0x120

Thread VyzhiRHMNAlan.exe (3496): 3581448 Ox124

Thread VyzhiRHMAan.exe (3496): 381452 Ox128

Thread VyzhiRHMAzn. exe (3496): 331456 Ox12c Ryuk encryption threads.

Thread YyzhifHMflan.exe (3496): 381460 0x130

Thread VyzhiRHMNflan.exe (39496): 381464 0x134

Thread VyzhiRHMNflan.exe (3496): 351468 0x133

Thread VyzhiRHMNflan.exe (39496): 381472 0x140

Thread VyzhiRHMNflan.exe (3496): 554400 0144

Thread VyzhiRHMNAlan. exe (3496): 554404 Ox143

Thread VyzhiRHMAan.exe (3496): 554448 Ox14c

Thread VyzhiRHMAan.exe (3496): 381476 0x154

Thread VyzhifHMflan.exe (3496): 381480 0x158

Thread VyzhiRHMNflan.exe (39496); 381484 Ox15c

Thread YyzhiRHMNflan.exe (3496): 351468 0x 160

Thread VyzhiRHMflan.exe (39496): 381492 0164

Thread VyzhiRHMNflan.exe (3496): 351496 0x163

Thread VyzhiRHMNflan.exe (3496): 381500 %170 1

Ryuk utilizes the functions FindFirstFileW and FindNextFileW in order to iterate through the
files on the victim system. Once a file has been found, Ryuk will call CreateThread in order to
start a new encryption thread.

It is notable how quickly Ryuk is able to enumerate the files on the victim system and encrypt
them. In my initial tests (running on a virtual machine with 50+ GB hard drive) files were
encrypted within a matter of 120 seconds or so, including files on network-attached drives.

Ryuk will also create a “readme” file (RyukReadme.htm) in every directory that contains
encrypted files. This readme file instructs the victim to contact the email address mentioned
for further instructions on how to pay the ransom:

8/11

Fle Edn Yiew Higtory Boskmarks Jook Help [o o

_."C'-'U:er:-"-‘llp-lr."-‘lppDabl-'Rorn)(.

i fileyC U sers fhs penAppDataRoaming,Micresalt,WindowsStart MenPrograrma s o & = 'a i & & & =

buscingdishool985@ protonmail.com

Ryuk

Ryuk

balance of shadow universe

readme file.

| originally wanted to go a bit more in depth into how Ryuk encrypted files and the encryption
algorithms used. However, after a bit of research and code review, | realized that Ryuk is not
doing anything incredibly new or note-worthy in terms of the encryption process. According
to this research, Ryuk is utilizing RSA-4096 and AES-256 encryption algorithms, which are
extremely strong and, at this point in time, “unbreakable”. | put unbreakable in quotes
because, technically, no encryption algorithms are completely unbreakable and all will
eventually be broken &

Network Enumeration

Ryuk performs some rudimentary network enumeration in order to discover other network
drives and adjacent systems to encrypt. In my tests, and according to the Ryuk code in the
sample | analyzed, Ryuk is able to enumerate the network in a few different ways.

First, Ryuk obtains the ARP table from the victim machine (using the GetlpNetTable function)

and attempts to ping those connected systems to see if they are online:

Source Destination Protocol Lengtt Info
10.12.56.1681 10.12.56.103 ECHO 144 Request
18.12.56.103 10.12.56.101 ECHO 144 Response
10.12.56.101 224.0.0,22 ECHO 144 Reguest
224.0.08.22 190.12.56.181 ECHO 144 Response
18.12.56.181 224.0.8.252 ECHO 144 Reguest
224.0.0.252 186.12.56.181 ECHO 144 Response
10.12.56.101 230.255.255.250 ECHO 144 Reguest Ryuk pinging
230.255.255.250 10.12.56.101 ECHO 144 Response
18.12.56.101 10.12.56.103 ECHO 144 Request
18.12.56.103 10.12.56.101 ECHO 144 Response
18.12.56.1091 224.0.8.22 ECHO 144 Request
224.0.0.22 190.12.56.181 ECHO 144 ReEsponse
18.12.56.181 224.0.8. 252 ECHO 144 Reqguest
224.0.0.252 10.12.56.101 ECHO 144 Response

connected systems.

9/11

https://malware.wikia.org/wiki/Ryuk

If these systems are “alive”, Ryuk will attempt to connect to and mount SMB shares on these
systems:

Time Source Destination

vy

.323346 16.12.56.181 18.12.56.255
178.
179.
179.
178.
179.
179.
188.
186.
188,

285588 18.12.56.1681 192.68.2.123
318643 192.4.2.123 16.412.56.161
359698 16.12.56.181 192.8.2.123
387750 152.8.2.123 18.12.56.181
432343 16.12.56.161 192.8.2.123
AGBBBE 192.8.2.123 18.12.56.191
816493 16.12.56.1681 192.68.2.123
346915 192.9.2.123 18.12.56.181
138152 16.12.56.181 192.8.2.123

Protocol
BROWSER
SME
SMB
SHB
SMA
SHB
SHB
SHE
SMB
SHB

attempting to connect to SMB network shares.
Ryuk will then attempt to encrypt any file system it is able to, given the victim system has the
correct permissions and network capabilities to mount these devices.

Length Info

254 Domaln/Workgroup Announcement

213 Negotiate
213 Negotiate
213 Negotlate
213 Negotiate
213 Negotiate
213 Negotlate
213 Negotiate
212 Negotiate
213 Negotlate

Protocol
Protocol
Protocol
Protocol
Protocol
Protocol
Protocol
Protocol
Protocol

Request
Request
Request
Request
Request
Request
Request
Request
Request

Ryuk

In addition, Ryuk grabs the network adapter IP addresses (using the GetAdapterAddresses
function) from the victim system:and attempts to send WOL (Wake-On-LAN) packets to
these systems in order to wake them up. Ryuk will only send WOL packets to addresses that
start with 10, 172, or 192.

lea rdx, SubStr ; "le.”
lea rcx, [rsp+8CBh+cp] ; Str
call strstr

lea rcx, [rsp+BCeh+cp]

cmp rax, rcx

jz short loc_13F4E2792

X

il s =

lea rdx, al7216 ; "172.16."
lea rcx, [rsp+8Ceh+cp] ; Str
call strstr

test rax, rax

jnz short loc_13F4E2792

v

rcx, [rsptB8C@h+cp] ; Str
test rax, rax
j loc_13F4E2949

rdx, al92168 ; "192.168."

& -

Defending Against Ryuk

Ryuk Wake-on-LAN attempts.

10/11

PFroioge Defense Credential Laceral o o

Command and
Escalation Ewicibomn Aotuss Discaiery M L piitred

Extiration impact

Ryuk

MITRE ATT&CK matrix.

e Since Ryuk (and other modern ransomware) is incredibly efficient and will encrypt an
entire filesystem and attached network drives very quickly (likely within minutes), it is
best to detect Ryuk as early in the Kill Chain as possible, ideally in the Delivery phases
and before Installation.

¢ Ryuk is typically delivered via other malware and droppers, such as Trickbot, Dridex,
and Cobalt Strike Beacons. Developing detections and mitigating controls against
these malware variants in order to detect an infection before the deployment of Ryuk is
optimal.

 In the event that Ryuk is deployed and encryption occurs, a sound business continuity
and backup plan will be very helpful. Ensure offline backups are kept available.

o Consider very carefully before paying the ransom for the purchase of the Ryuk
decryptor software. This decryptor software has been well-researched by several threat
intelligence vendors, and is said to be very poorly programmed and tends to crash
during the decryption process, or worse, permanently destroys encrypted files.

As always, thanks for reading! If you enjoyed this post, follow me on Twitter (@d4rksystem).

11/11

https://www.securitynewspaper.com/2019/12/10/a-bug-in-the-ryuk-ransomware-makes-data-recovery-impossible-even-if-the-ransom-is-paid-who-will-fix-this-flaw/
https://twitter.com/d4rksystem

