
1/16

ByteRaptors June 3, 2020

The WizardOpium LPE: Exploiting CVE-2019-1458
byteraptors.github.io/windows/exploitation/2020/06/03/exploitingcve2019-1458.html

Jun 3, 2020

In December Kaspersky published a blog post about a 0day exploit spotted in the wild, CVE-
2019-1458.

The vulnerability is in the win32k.sys driver and can allow an attacker to elevate an
application privileges to SYSTEM, potentially causing a sandbox escape.

I highly recommend you to first read this article which contains a very good description of all
the nitty-gritty details of this vulnerability since in this post I will focus only on the exploitation
of the vulnerability itself on a Window 7 x64 machine.

Why just Windows 7?

In my personal opinion, it makes much more sense for a person who is just getting started
with Windows Kernel Exploitation to develop the exploit for Windows 7 instead of dealing
with Windows 10 mitigations.

Moreover, since the approach I chose to exploit this vulnerability involves building a Kernel
Write What Where primitive to carry out a data-only attack, it will be pretty easy to make this
exploit work against a Windows 8.1 machine.

Let’s get started

CVE-2019-1458 is an arbitrary kernel pointer dereference vulnerability. In other words, an
attacker has the possibility to trigger the dereference of a kernel memory address of his
choice.

If you have read the article linked above, you will know this vulnerability has some
constraints:

It is possible to trigger the vulnerability only once per system reboot.
The attacker has no control over the content of the value being assigned to the
dereferenced pointer.

Let’s start with getting a clear idea of what we have and what we want to achieve: we have
the possibility to trigger the dereference of a kernel memory address of our choice and we
want to elevate our privileges to SYSTEM, possibly even escaping a browser sandbox.

https://byteraptors.github.io/windows/exploitation/2020/06/03/exploitingcve2019-1458.html
https://github.com/piotrflorczyk/cve-2019-1458_POC

2/16

But how do we actually achieve this? Most of modern Windows Kernel Exploitation
techniques strive to get a Write What Where kernel primitive (hereinafter WWW Primitive):
the ability to arbitrarily read and write to kernel memory. Usually building a WWW primitive
consists in triggering a kernel vulnerability with the goal of corrupting specific Windows
Kernel objects fields.

Our journey to successfully exploit this vulnerability can be divided into the following parts:

Understanding the pointer dereference.
Choosing a suitable kernel structure whose fields we want to corrupt.
Dealing with KASLR.
Triggering to vulnerability to corrupt the target structure.
Building the WWW primitive.
Leveraging the WWW primitive to elevate privileges.
Fixing corrupted kernel structure.

Understanding the pointer dereference

As already stated before, I highly recommend you to first read the analysis I linked you
above before keeping reading this article. In a nutshell, this vulnerability allows to overwrite
the pointer to a structure containing information about the Switch Window by calling the
SetWindowLongPtr API. This pointer will be accessed during the execution of the
xxxPaintSwitchWindow and will be dereferenced as you can see in the code below (the
pointer is present in the register RDI):

sub [rdi + 0x60], EBX
add [rdi + 0x68], EBX
sub [rdi + 0x5C], ECX
add [rdi + 0x64],ECX

Since the pointer to this structure can be deliberately overwritten by an attacker, this code
will increment and decrement data pointed at four different offsets starting from the attacker-
provided kernel address.

Let’s see in the next section what we can do with this information!

Choosing a suitable target kernel structure

Unfortunately, we do not have control over the values that will get assigned to our
dereferenced pointer. For this reason, our best bet would be to leverage this vulnerability to
modify a field of a kernel object in such a way that we will be able to trigger an Out of Bound
write access to some nearby object to develop a stronger primitive.

3/16

The technique I will use has been described by Saif El Sherei and relies on the fact that if an
attacker is able to place two tagWND objects in memory one after another and then corrupt
the cbwndExtra field of the first tagWND object it will be possible to use the
SetWindowLongPtr API on the tagWND whose cbwndExtra field has been corrupted to be
able to write to the tagWND object placed next to the corrupted one.

But what is the tagWND? In a nutshell, the tagWND is a kernel structure which represents a
WINDOW object in kernel memory.

You can find a very good description of the tagWND structure here .

Let’s have a look at the tagWND on WinDBG:

The most interesting fields for us will be the strName and the cbwndExtra. For now, let’s
focus on the latter, representing the size of the extra memory area allocated after the window
instance.

When creating a WINDOW, it is possible to specify the number of extra bytes to allocate after
the window instance, as you can see in the code snippet below:

WNDCLASSEXW* testClass =
(WNDCLASSEXW*)HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,sizeof(WNDCLASSEXW));
testClass->cbSize = sizeof(WNDCLASSEXW);
testClass->lpfnWndProc = (WNDPROC)DefWindowProcW;
testClass->lpszClassName = L"TestClass";
testClass->cbWndExtra = 0x1000;
RegisterClassExW(testClass);
CreateWindowExW(0, testClass->lpszClassName, L"DummyName", WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, 0, 0);

https://www.geoffchappell.com/studies/windows/win32/user32/structs/wnd/index.htm

4/16

Running this code will trigger the creation in kernel mode of a tagWND object having 0x1000
as cbwndExtra field value!

Since the SetWindowLongPtr function can be used to set a value at a specified offset in the
extra window memory, if we manage to leverage the vulnerability in such a way that the
cbwndExtra value of a tagWND object will be much higher than the original one, issuing a
call to the SetWindowLongPtr will result in an Out of Bound write, allowing us to further
corrupt other kernel structures.

Dealing with KASLR

Considering that we are dealing with an arbitrary pointer dereference, we will not need to
perform some magic kernel pool feng-shui to accomplish our goal. In order to successfully
corrupt the cbwndExtra of our target tagWND object we will need to solve just two problems:

Getting the tagWND object kernel address
Choosing the right offset to trigger the dereference on

Getting the tagWND object kernel address

To leak the tagWND kernel address we can use the well-known HMValidateHandle
technique: since this function allows to map the tagWND object in the user mode memory
space, we will be able to get its kernel mode address and its field values.

This technique is extremely popular in the world of Windows Kernel Exploitation and a lot of
words have been spent on it, for more information about this topic just read here .

Choosing the right offset

The arbitrary pointer dereference operates on four offsets starting from the attacker-provided
address: 0x60, 0x68,0x5C and 0x64. The small problem that arises is that since our target
cbwndExtra field is located at offset 0xE8, we can’t just trigger the vulnerability by providing
the tagWND kernel address since the triggered arbitrary dereference will not access offset
0xE8.

Let’s look at the first dereference:

sub [rdi + 0x60], ebx

Since 0x88 + 0x60 = 0xE8 we can just trigger the vulnerability by providing this address:

tagWNDKernelAddress + 0x88

In this way, the value of the cbwndExtra field will be decremented and become less than
zero, allowing us to get a partial write primitive.

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_WP.pdf

5/16

There is still a problem: since it is not the only dereference present, other fields of the
tagWND structure will be corrupted, resulting in a BSOD as soon as we close the application.
Since the BSOD will be triggered only after closing the application, we will take care of this
issue in the last chapter of our adventure.

Triggering the vulnerability

We are now ready to trigger the vulnerability!

The process of triggering the vulnerability can be divided into the following parts:

Triggering the creation of two adjacent tagWND objects.
Creating the target Window and initializing it.
Setting the pointer we want to trigger the arbitrary dereference on.
Creating the special Switch Window.
Simulating the pressing of the ALT keyboard button
Sending the WM_ERASEBKGND to the target Window

Triggering the creation of two adjacent tagWND Objects

This part is actually not related to the vulnerability itself, but we will need it to successfully
exploit the vulnerability.

Since our goal is to trigger the vulnerability to corrupt the cbwndExtra field of a tagWND
object, we will need to make sure that we will create two adjacent tagWND structure since
this approach will give us just a partial write primitive!

To solve this problem, we can just create a lot of Window objects, leak their addresses using
the HMValidateHandle technique and just look at the distance between the created objects to
choose the nearest between each other ones.

Once we found two adjacent tagWND object we can continue to the next part.

Creating and initializing the target Window

We will now need to create the Window object which will be used to trigger the vulnerability.
To accomplish this task, we can just register a Window class with a cbwndExtra field of 0x8
and then use the CreateWindowEx API to create our target Window.

Then we will just initialize the target window by calling the NtUserMessageCall with the
WM_CREATE param.

NtUserMessageCall(targetWindow,0x1,0,0,0,0xE0,1); //0x1 is WM_CREATE

6/16

But how do we actually call the NtUserMessageCall function? We will need to issue a
syscall! Luckily for us, at this address we can find the list of all Windows syscalls with their
number: as we can see, the syscall number for NtUserMessageCall is 0x1007 on Windows 7
x64.

There is still a small problem we will need to solve: since we want to support execution from
Wow64 processes, we will need to support Wow64 syscalls as we can see in the snippets
below:

_declspec(naked) NTSTATUS WINAPI NtUserMessageCallWow64(HWND, UINT, WPARAM, LPARAM,
ULONG_PTR, DWORD, BOOL)
{

_asm{
 mov eax, 0x1007;
 xor ecx,ecx;
 lea edx, dword ptr ss:[esp+0x4];
 call dword ptr fs:[0xC0];
 add esp,0x4;
 retn 0x1C;
}

}

PUBLIC NtUserMessageCall
NtUserMessageCall PROC
 mov r10, rcx
 mov eax,0x1007
 syscall
 ret
NtUserMessageCall ENDP

Setting the pointer we want to trigger the arbitrary dereference on

It’s now time to call the SetWindowLongPtr on the target Window specifying the address of
the first of the two created adjacent tagWND objects as already explained before.

SetWindowLongPtr(targetWindow,0,(ULONG)(tagWNDKernelAddress + 0x88));
SetWindowLongPtr(targetWindow,4,(ULONG)(tagWNDKernelAddress >> 32));

In this way the offset 0x88 of the tagWNDKernelAddress will be dereferenced in the
xxxPaintSwitchWindow function after sending the WM_ERASEBKGND message as we will
see in the next sections.

If we pay attention to the code above, we will notice that the SetWindowLongPtr function is
actually called two times: this approach is used to support execution from Wow64 processes
since it will not be possible to set a ULONG64 address by calling the SetWindowLongPtr
function just once from a 32 bit process.

Creating the special Switch Window

https://github.com/j00ru/windows-syscalls

7/16

Creating this Window will be crucial to execute the code path to trigger the vulnerability as
you can read in the detailed analysis of the vulnerability I linked above.

HMODULE currMod = GetModuleHandleA(NULL);
HWND taskSwitchWnd = CreateWindowExA(0, "#32771", NULL, 0, 0, 0, 0, 0, 0, 0, currMod,
0);

Simulating the pressing of the ALT keyboard button

To trigger the vulnerability, we will need to simulate the pressing of the ALT keyboard button.
Let’s take a better look at the pseudo C code checking for the status of the ALT button:

if(*((DWORD*)(arbitraryKernelAddress + 0x6C))) == 0){
if(GetAsyncKeyState(VK_MENU) >= 0)
 goto fail

}
else{

if(GetKeyState(VK_MENU) >= 0)
 goto fail

}

The function will compare to zero a DWORD value located at the offset 0x6C starting from
the attacker-provided kernel address and will determine according to the comparison result
which function to use to get the status of the ALT button. What are the differences between
the GetAsyncKeyState and GetKeyState functions?

The GetKeyState function will get the key status returned from the thread’s message queue,
while the GetAsyncKeyState will determine whether the key was pressed since the last call
to GetAsyncKeyState.

Since we decided to provide the address of our target tagWND structure + 0x88, the
vulnerable function will check the DWORD at offset 0xF0 (0x88 + 0x6C) of the target
tagWND address.

The DWORD at address 0xF0 will contain the lowest 32 bits of the spwndLastActive field of
the target tagWND object.

Since we can get a read-only copy of the tagWND object by calling the HMValidateHandle
function, we can just check the value of the DWORD at the offset 0xF0 to determine how to
simulate the pressing of the ALT button.

8/16

if(*((DWORD*)(tagWNDUsermodeCopy + 0xF0)) == 0){
INPUT inputData = { 0 };
inputData.type = INPUT_KEYBOARD;
inputData.ki.wVk = VK_MENU;
inputData.ki.dwFlags = 0;

SendInput(1, &inputData, sizeof(inputData));

}
else{

BYTE keyState[256];
GetKeyboardState(keyState);
keyState[VK_MENU] |= 0x80;
SetKeyboardState(keyState);

}

Sending the WM_ERASEBKGND to the target Window

So here we are! We will now send the WM_ERASEBKGND message to the target Window
by calling the NtUserMessageCall API. Sending this message will trigger the execution of the
xxxPaintSwitchWindow on the vulnerable code path where the arbitrary pointer dereference
occurs!

NtUserMessageCall(targetWindow,0x14,0,0,0,0xE0,1); //0x14 is WM_ERASEBKGND

Let’s take a look at our target tagWND object before sending the WM_ERASEBKGND
message:

9/16

If we pay attention to the pictures above, we will see that the value of the cbwndExtra field is
0x3000 (12288 in decimal).

Let’s now have a look at the very same kernel address after sending the
WM_ERASEBKGND message:

10/16

The value of the cbwndExtra has become much bigger than the original one! As already
stated before, by corrupting the cbwndExtra field of a tagWND object we will be able to turn a
call to the SetWindowLongPtr API into a partial kernel write primitive.

We will now see in the next section how to turn this partial write primitive into something
more powerful.

Building the WWW Primitive

The cbwndExtra of our corrupted tagWND is now very big. What does this imply? By issuing
a call to the SetWindowLongPtr API and specifying the HWND of our corrupted tagWND
object we will be able to trigger an Out-of-Bound write and write across the extra memory of
our tagWND object.

The only thing that we must take into account is that we will need to calculate the distance
between the beginning of our corrupted tagWND extra memory and the field of the adjacent
tagWND structure we want to corrupt! A nice write-up of this technique can be found here

Moreover, before keeping reading I strongly recommend you to first read this article if you
are not familiar with using BITMAP objects to build WWW primitives.

Our plan to build our WWW primitive will look like this:

Create two BITMAP objects (Manager and Worker) and leak their kernel addresses.
Use our partial write primitive to set the strName field of the adjacent tagWND object to
the address of our Manager BITMAP.
Call the SetWindowText on the adjacent tagWND object by setting the window text as
the address of the Worker BITMAP.

Creating two BITMAP Objects and leaking their addresses

Considering the fact that we are exploiting this vulnerability on a Windows 7 x64 machine,
creating BITMAP objects and leaking their addresses will be pretty trivial since it can be
accomplished by just accessing the GdiSharedHandleTable.

For more information about this topic, just read the CoreSecurity article I linked above.

Corrupting the strName field

The strName field of a tagWND object is a LARGE_UNICODE_STRING structure containing
a pointer to a buffer in which it is stored the name of the Window object.

This is the buffer the function NtUserDefSetText will ultimately operate on. In other words, if
we are able to modify the address contained in the strName.Buffer field of a tagWND object,
the NtUserDefSetText function will write data to the specified address!

https://blog.trendmicro.com/trendlabs-security-intelligence/one-bit-rule-system-analyzing-cve-2016-7255-exploit-wild/
https://www.coresecurity.com/core-labs/articles/abusing-gdi-for-ring0-exploit-primitives

11/16

Technically we could build a full Write What Where primitive just by leveraging
NtUserDefSetText for the write primitive and InternalGetWindowText for the read primitive but
since I wanted to show you how to build a WWW primitive by abusing GDI objects, let’s use
the SetWindowLongPtr function to overwrite the strName.Buffer field of the adjacent tagWND
object with the address of the pvScan0 field of our Manager Bitmap object.

To corrupt the strName field of our target adjacent object, we will just need to call the
SetWindowLongPtr API with the HWND of the corrupted tagWND object and the right offset
as already explained above.

SetWindowLongPtr(corruptedWindowHWND,offsetDelta,(ULONG)(pManagerBitmapAddress));
SetWindowLongPtr(corruptedWindowHWND,offsetDelta + 0x4,(ULONG)(pManagerBitmapAddress
>> 32));

Modifying the Manager Object pvscan0 field

Since the strName.Buffer field of the adjacent tagWND object is set to the address of the
pvscan0 field of the Manager object, we will now call the SetWindowTextW API to actually
overwrite the value of the Manager’s pvscan0 field.

By specifying the address of the Worker Bitmap object as shown in the code below, the
pvScan0 field of the Manager BITMAP will have the value of the address of the pvscan0
address of the Worker Bitmap. In other words, we will be then able to arbitrarily read and
write the kernel memory by calling the GetBitmapBits/SetBitmapBits APIs on the corrupted
BITMAP objects!

wchar_t* inputText =
(wchar_t*)HeapAlloc(GetProcessHeap(),HEAP_ZERO_MEMORY,5*sizeof(wchar_t));

inputText[3] = (pWorkerBitmapAddress >> 48) & 0xFFFF;
inputText[2] = (pWorkerBitmapAddress >> 32) & 0xFFFF;
inputText[1] = (pWorkerBitmapAddress >> 16) & 0xFFFF;
inputText[0] = (pWorkerBitmapAddress >> 0) & 0xFFFF;

SetWindowTextW(adjacentWindowHwnd, (LPWSTR)inputText);

Congratulations! We have built a full WWW primitive which will allow us to read and write to
any address in kernel memory!

Elevating privileges

Once we have a full WWW primitive, there are a lot of ways to elevate our privileges. In this
article, we will focus on one of the most common approaches: stealing the SYSTEM TOKEN.

Every process running on the system is represented in kernel memory in a EPROCESS
structure which describes several properties of the process, such as its process image name
and process security context.

12/16

One of the EPROCESS structure most interesting fields is the TOKEN structure: a kernel
memory structure describing the process token privileges.

A common strategy used when exploiting a Windows Kernel vulnerability is to replace the
TOKEN of the process in which the exploit code will we executed with the TOKEN of the
SYSTEM process. The replacing of our process TOKEN with the SYSTEM’s token will give
us SYSTEM privileges on the targeted machine, allowing us to successfully escape the
browser sandbox! Sounds good, right?

Since we have already built our WWW primitive, we will just need to understand how to get
the kernel address of the SYSTEM EPROCESS structure and the kernel address of our
process EPROCESS structure.

Getting EPROCESS address

A very common approach to get the address to the System EPROCESS structure is to get
the offset to the PsInitialSystemProcess variable by loading in memory the ntoskrnl.exe
executable and then getting the kernel address of ntoskrnl.exe by calling the
EnumDeviceDrivers function.

Unfortunately this approach will not work when exploiting the vulnerability from a Wow64
process!

In order to achieve full coverage, we will need to use another approach!

Let’s have a look at the THRDESKHEAD object on WinDBG, the header for user objects that
can be owned by a thread and are specific to a desktop (it begins the tagWND structure):

If we see the picture above, we can get a pointer to a tagTHREADINFO structure at offset
0x10 of the tagWND.

To get this pointer, we can just use our kernel Read primitive:

ULONG64 tagTHREADINFO = 0;
readQWORD(tagWNDKernelAddress + 0x10,&tagTHREADINFO);

The tagTHREADINFO is a pretty complex structure, but we will not need to fully understand
it to successfully exploit this vulnerability.

13/16

If we look at offset 0x158 we will see a pointer to a tagPROCESSINFO structure.

ULONG64 tagTHREADINFO = 0;
readQWORD(tagWNDKernelAddress + 0x10,&tagTHREADINFO);
ULONG64 tagPROCESSINFOAddress = 0;
readQWORD(tagTHREADINFO + 0x158,&tagPROCESSINFOAddress);

14/16

As you can see in the picture above, the first field of the tagPROCESSINFO is a pointer to
the current process EPROCESS structure!

This means that we can just use our kernel Read Primitive to access the first field of the
tagPROCESSINFO structure and obtain the address of our process’ EPROCESS structure!

ULONG64 tagTHREADINFO = 0;
readQWORD(tagWNDKernelAddress + 0x10,&tagTHREADINFO);
ULONG64 tagPROCESSINFOAddress = 0;
readQWORD(tagTHREADINFO + 0x158,&tagPROCESSINFOAddress);
ULONG64 eprocessAddress = 0;
readQWORD(tagPROCESSINFOAddress,&eprocessAddress);

In order to get the address of the SYSTEM EProcess structure, we will need to iterate the
LIST_ENTRY ActiveProcessLinks field starting from our process’ EPROCESS structure
looking for an EPROCESS structure having PID 0x4 (the SYSTEM process) as you can see
in the example code below:

15/16

ULONG64 getCurrentProcessEProcess(ULONG64 tagWNDAddress)
{

ULONG64 tagTHREADINFO = 0;

readQWORD(tagWNDAddress + 0x10,&tagTHREADINFO);

ULONG64 tagPROCESSINFO = 0;

readQWORD(tagTHREADINFO + 0x158,&tagPROCESSINFO);

ULONG64 eprocessAddress = 0;

readQWORD(tagPROCESSINFO,&eprocessAddress);

return eprocessAddress;

}

void setSystemToken(ULONG64 tagWNDAddress)
{

ULONG64 currentEProcess = getCurrentProcessEProcess(tagWNDAddress);

ULONG64 tempEProcess = currentEProcess;

ULONG64 currentProcID = 0;

readQWORD(currentEProcess + 0x180,¤tProcID);

if(currentProcID != GetCurrentProcessId())
 return;

while(TRUE)
{
 ULONG64 activeProcessLinks = 0;

 readQWORD(tempEProcess + 0x188,&tempEProcess); //0x188 is the offset
of ActiveProcessLinks on Windows 7 x64

 tempEProcess -= 0x188;
 ULONG64 uniqueProcessID = 0;

 readQWORD(tempEProcess + 0x180,&uniqueProcessID); // 0x180 is the
offset of UniqueProcessID on Windows 7 x64

 if(uniqueProcessID == 4)
 break;

}

ULONG64 systemToken = 0;

readQWORD(tempEProcess + 0x208,&systemToken); //0x208 is the offset of TOKEN
on Windows 7 x64

writeQWORD(currentEProcess + 0x208,systemToken);

16/16

}

Once we have all the needed addresses, we will just need to use our Read primitive to steal
the TOKEN of the SYSTEM process and use our write primitive to overwrite our process
TOKEN with the SYSTEM token we have just stolen!

Great! We are now SYSTEM! Unfortunately, as long as we will close our application, the
system will crash!

Fixing corrupted tagWND structure

In the chapters before, I reminded you that the arbitrary dereference is triggered at four
different offsets. In other words, the cbwndExtra will not be the only tagWND field which will
be corrupted.

Since the crash happens only after closing the application, we will just need to make sure to
use our WWW primitive to fix the corrupted addresses before terminating execution.

In order to achieve our goal, we will rely on the fact that the HMValidateHandle function will
give us read-only access to the tagWND kernel structure data, allowing us to save all the
needed values before corrupting them when triggering the vulnerability.

Let’s take a look at the following pseudo C code which will make use of our WWW primitive
to fix the corrupted structures:

writeQWORD(corruptedWindowKernelAddress + 0xF0, spwndOriginal);
writeQWORD(corruptedWindowKernelAddress + 0xE0, originalValue);
writeQWORD(corruptedWindowKernelAddress + 0xD8, 0); // Sets to NULL the strName field
writeQWORD(adjacentWindowKernelAddress + 0xE0, 0);

After fixing this issue, our exploit will stop crashing the system after closing the application!

Conclusion

I consider CVE-2019-1458 a great vulnerability to get started with Windows Kernel
Exploitation since it is pretty easy to exploit. I think I will publish in the next weeks another
article explaining how to exploit this vulnerability on Windows 10. Full source code to exploit
this vulnerability will be published in the next days!

