
1/4

February 9, 2004

Pointers to member functions are very strange animals
devblogs.microsoft.com/oldnewthing/20040209-00

Raymond Chen

Pointers to member functions are very strange animals.

Warning: The discussion that follows is specific to
the way pointers to member functions

are implemented by the
Microsoft Visual C++ compiler. Other compilers may do things

differently.

Well, okay, if you only use single inheritance, then
pointers to member functions are just a

pointer to the
start of the function, since all the base classes
share the same “this” pointer:

class Simple { int s; void SimpleMethod(); };

class Simple2 : public Simple

 { int s2; void Simple2Method(); };

class Simple3 : public Simple2

 { int s3; Simple3Method(); };

p → Simple::s
Simple2::s2

Simple3::s3

Since they all use the same “this” pointer (p), a pointer to
a member function of Base can be

used as if it were a pointer
to a member function of Derived2 without any adjustment

necessary.

The size of a pointer-to-member-function of a class that
uses only single inheritance is just the
size of a pointer.

But if you have multiple base classes, then things get interesting.

class Base1 { int b1; void Base1Method(); };

class Base2 { int b2; void Base2Method(); };

class Derived : public Base1, Base2

 { int d; void DerivedMethod(); };

https://devblogs.microsoft.com/oldnewthing/20040209-00/?p=40713

2/4

p → Base1::b1

q → Base2::b2
Derived::d

There are now two possible “this” pointers. The first (p) is used
by both Derived and Base1,

but the second (q) is used by Base2.

A pointer to a member function of Base1 can be used as a pointer
to a member function of

Derived, since they both use the same “this”
pointer. But a pointer to a member function of

Base2 cannot be
used as-is as a pointer to a member function of Derived, since the
“this”

pointer needs to be adjusted.

There are many ways of solving this.
Here’s how the Visual Studio compiler decides to handle

it:

A pointer to a member function of a multiply-inherited class
is really a structure.

Address of function

Adjustor

The size of a pointer-to-member-function of a class that
uses multiple inheritance is the size of a
pointer plus the
size of a size_t.

Compare this to the case of a class that uses only single inheritance.

The size of a pointer-to-member-function can change depending on
the class!

Aside: Sadly, this means that Rich Hickey’s wonderful technique of
Callbacks
in C++ Using

Template Functors cannot be used as-is.
You have to fix the place where he writes the

comment

// Note: this code depends on all ptr-to-mem-funcs being same size

Okay, back to our story.

To call through a pointer to a member function, the “this”
pointer is adjusted by the Adjustor,

and then the function
provided is called. A call through
a function pointer might be compiled

like this:

http://www.tutok.sk/fastgl/callback.html

3/4

void (Derived::*pfn)();

Derived d;

(d.*pfn)();

 lea ecx, d ; ecx = "this"

 add ecx, pfn[4] ; add adjustor

 call pfn[0] ; call

When would an adjustor be nonzero? Consider the case above.
The function

Derived::Base2Method() is really Base2::Base2Method()
and therefore expects to receive “q”

as its “this” pointer.
In order to convert a “p” to a “q”, the adjustor must have the
value

sizeof(Base1), so that when the first line of Base2::Base2Method()
executes, it receives the

expected “q” as its “this” pointer.

“But why not just use a thunk instead of manually adding the adjustor?”
In other words, why

not just use a simple pointer to a thunk that
goes like this:

Derived::Base2Method thunk:

 add ecx, sizeof(Base1) ; convert "p" to "q"

 jmp Base2::Base2Method ; continue

and use that thunk as the function pointer?

The reason: Function pointer casts.

Consider the following code:

void (Base2::*pfnBase2)();

void (Derived::*pfnDerived)();

pfnDerived = pfnBase2;

 mov ecx, pfnBase2 ; ecx = address

 mov pfnDerived[0], ecx

 mov pfnDerived[4], sizeof(Base1) ; adjustor!

We start with a pointer to a member function of Base2,
which is a class that uses only single

inheritance, so it
consists of just a pointer to the code.
To assign it to a pointer to a member

function
of Derived, which uses multiple inheritance, we can re-use
the function address, but

we now need an adjustor so that
the pointer “p” can properly be converted to a “q”.

Notice that the code doesn’t know what function pfnBase2
points to, so it can’t just replace it

with the matching thunk.
It would have to generate a thunk at runtime and somehow
use its

psychic powers to decide when the memory can safely
be freed. (This is C++. No garbage

collector here.)

Notice also that when pfnBase2
got cast to a pointer to member function of Derived, its size

changed,
since it went from a pointer to a function in a class that uses only single
inheritance

to a pointer to a function in a class
that uses multiple inheritance.

Casting a function pointer can change its size!

4/4

I bet that you didn’t know that before reading this entry.

There’s still an awful lot more to this topic,
but I’m going to stop here before everybody’s

head explodes.

Exercise:
Consider the class

class Base3 { int b3; void Base3Method(); };

class Derived2 : public Base3, public Derived { };

How would the following code be compiled?

void (Derived::*pfnDerived)();

void (Derived2::*pfnDerived2();

pfnDerived2 = pfnDerived;

Answer to appear tomorrow.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

