
1/2

March 22, 2005

Why does the debugger show me the wrong function?
devblogs.microsoft.com/oldnewthing/20050322-00

Raymond Chen

Often you’ll be minding your own business debugging some code,
and you decide to step into

one function
and the debugger shows that you’re in some other function.
How did that

happen?

class Class1

{

public:

int *GetQ() { return q; }

private:

int *p;

int *q;

};
class Class2

{

public:

virtual int GetValue() { return value; }

private:

int value;

};

You then step through code that does something like this:

int Whatever(Class2 *p)

{

return p->GetValue();

}

And when you step into the call to p->GetValue()
you find yourself in Class1::GetQ .

What happened?

What happened is that the Microsoft linker combined functions that
are identical at the

code generation level.

https://devblogs.microsoft.com/oldnewthing/20050322-00/?p=36113

2/2

?GetQ@Class1@@QAEPAHXZ PROC NEAR ; Class1::GetQ, COMDAT

 00000 8b 41 04 mov eax, DWORD PTR [ecx+4]

 00003 c3 ret 0

?GetQ@Class1@@QAEPAHXZ ENDP ; Class1::GetQ

?GetValue@Class2@@UAEHXZ PROC NEAR ; Class2::GetValue, COMDAT

 00000 8b 41 04 mov eax, DWORD PTR [ecx+4]

 00003 c3 ret 0

?GetValue@Class2@@UAEHXZ ENDP ; Class2::GetValue

Observe that at the object code level,
the two functions are identical.
(Note that whether two

functions are identical at the object code level
is highly dependent on which version of what

compiler you’re using,
and with which optimization flags.
Identical code generation for

different functions occurs with very
high frequency when you use templates.)
Therefore, the

linker says,
“Well, what’s the point of having two identical functions?
I’ll just keep one copy

and use it to stand for both
 Class1::GetQ and
 Class2::GetValue .”

0:000> u Class1::GetQ

010010d6 8b4104 mov eax,[ecx+0x4]

010010d9 c3 ret

0:000> u Class2::GetValue

010010d6 8b4104 mov eax,[ecx+0x4]

010010d9 c3 ret

Notice that the two functions were merged: The addresses are
identical.
That one fragment of

code merely goes by two names.
Therefore, when the debugger sees that you’ve jumped to

0x010010d6 ,
it doesn’t know which of the names it should use, so it just picks on.

That’s why it looks like you jumped to the wrong function.

To disable what is called “identical COMDAT folding”, you can pass
the /OPT:NOICF flag to

the linker.

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/vccore/html/_core_.2f.OPT.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

