
1/3

April 19, 2006

Adding a new flag to enable behavior that previously was
on by default

devblogs.microsoft.com/oldnewthing/20060419-14

Raymond Chen

One of the suggestions for addressing the network compatibility problem was to give up on

fast mode and have a new “fast mode 2”. (Equivalently, add a flag to the server capabilities

that means “I support fast mode, and I’m not buggy.”) This is another example of changing

the rules after the game is over, by adding a flag to work around driver bugs.
Consider a

hypothetical program that uses fast mode on Windows XP. It runs against a Windows Server

2003 server and everybody is happy. Suppose you make a change to Windows Vista so that it

requires that servers set a new “fast mode 2” flag in order to support fast mode. When the

customer upgrades their client from Windows XP to Windows Vista, they would find that

their hypothetical program ran much slower. Whose fault is it? Not the hypothetical program

that was using fast mode on Windows XP; that program is using fast mode correctly. Not the

Windows Server 2003 machine; that server supports fast mode correctly. Is it

Windows Vista, then, that is at fault?
“Hey, don’t blame me,” you answer. you answer. “It’s

that guy over there. That guy you’ve never heard of. He made me do it. Blame him!”
To

describe this sort of behavior I like to steal a phrase from Albert Einstein: “Spooky action at a

distance“. (Einstein used it to describe what in modern physics is known as quantum

entanglement.) In this particular situation, we have a conversation between two participants

(the client software and the server software) mediated by a third (Windows) which collapses

due to the mere existence of a fourth party not involved in the conversation! It’s as if your CD

player suddenly lost the ability to play any of your music CDs because some company you’ve

never heard of halfway around the world pressed a bunch of bad CDs for a few months earlier

this year.
Some people suggested, “Why not have a flag that says ‘I support fast mode’?”

Indeed that flag already exists; that’s why Windows Vista was trying to use fast mode in the

first place. The problem wasn’t that the server didn’t support fast mode. The problem was

that the server had a bug in its fast mode implementation.
“Okay, then add a new flag that

says ‘My fast mode isn’t buggy.'” Consider also how this course of action would look after a

few revisions of the specification:

https://devblogs.microsoft.com/oldnewthing/20060419-14/?p=31473
http://blogs.msdn.com/oldnewthing/archive/2006/03/30/564809.aspx#564864
http://blogs.msdn.com/oldnewthing/archive/2006/03/31/565878.aspx#567123
http://blogs.msdn.com/oldnewthing/archive/2006/03/30/564809.aspx#564883
http://blogs.msdn.com/oldnewthing/archive/2006/04/10/572491.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/04/05/568944.aspx
http://en.wikipedia.org/wiki/Action_at_a_distance_(physics)

2/3

In response to the QUERY_CAPABILITIES request, the server shall return a 32-bit value
consisting of zero of more of the following bits:

0x00000001 This server supports fast mode

0x00000002 This server supports fast mode and doesn’t have the bug where
enumerating a directory with more than 128 files fails on the 129th
query

0x00000004 This server supports fast mode and doesn’t have the bug where the
long file name is reported incorrectly in the response packet

0x00000008 This server supports fast mode and doesn’t have the bug where
directories whose names consist entirely of digits are misreported as
files

0x00000010 This server supports fast mode and doesn’t have the bug where the
enumeration resets if a file is created in the directory while the
enumeration is in progress

0x00000020 This server supports fast mode and doesn’t have the bug where
FindNext returns failure even though there are still files to be

enumerated

…

If a new capabilities flag were created for every single server bug that was discovered, the

capabilities mask would quickly fill up with all these random bits for bugs that were fixed

ages ago. And each time a bug was found in any one server, all servers would have to be

updated to add the new capabilities bit that says, “I’m not that buggy server you found on

April 8th 2006,” even the servers sitting in a locked closet whose operating systems are

burned into EPROMs. And if you’re the author of a new server, which capabilities bits do you

set? Do you claim that you don’t have the bug where FindNext returns failure even though

the enumeration hasn’t completed? What if, six months after you ship, somebody finds a bug

in your server of exactly that sort? I guess this mean that the next revision of the protocol will

have to have a new flag:

0x00000020 This server supports fast mode and doesn’t have the bug where it
claims that it doesn’t have the “ FindNext returns failure even
though there are still files to be enumerated” bug, even though it
actually does have the bug, but in a more subtle manner

3/3

Or maybe you’re convinced that you don’t have any bugs in your “fast mode”

implementation. Do you report 0xFFFFFFFF to say “I have no bugs at all, not even the ones

people might discover later in other implementations”? What happens when the 33rd “fast

mode” bug is found? Do we have to have a QUERY_CAPABILITIES2 function? If a

capabilities bit is created for every single bug that ever existed in a networking protocol

implementation, you’d have a few thousand capability bits all of whom mean “I don’t have

that bug where…”

Now, I’m not saying that this course of action is out of the question. Sometimes you have to

do it, but you also have to realize that the cost for making this type of change is very high, and

the benefit had better be worth it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

