
1/2

July 21, 2006

Calling an imported function, the naive way
devblogs.microsoft.com/oldnewthing/20060721-06

Raymond Chen

An import library resolves symbols for imported functions, but it isn’t consulted until the link

phase. Let’s consider a naive implementation where the compiler is blissfully unaware of the

existence of imported functions. In the 16-bit world, this caused no difficulty at all. The

compiler generated a far call instruction and left an external record in the object file

indicating that the address of the function should be filled in by the linker. At that time, the

linker realizes that the external symbol corresponds to an imported function, so it takes all

the call targets, threads them together, and creates an import record in the module’s import

table. At load time, those call entries are fixed up and everybody is happy. Let’s look at how a

naive 32-bit compiler would deal with the same situation. The compiler would generate a

normal call instruction, leaving the linker to resolve the external. The linker then sees that

the external is really an imported function, and, uh-oh, the direct call needs to be converted

to an indirect call. But the linker can’t rewrite the code generated by the compiler. What’s a

linker to do? The solution is to insert another level of indirection. (Warning: The information

below is not literally true, but it’s “true enough“. We’ll dig into the finer details later in this

series.) For each exported function in an import library, two external symbols are generated.

The first is for the entry in the imported functions table, which takes the name

__imp__FunctionName . Of course, the naive compiler doesn’t know about this fancy

__imp__ prefix. It merely generates the code for the instruction call FunctionName and

expects the linker to produce a resolution. That’s what the second symbol is for. The second

symbol is the longed-for FunctionName , a one-line function that consists merely of a jmp

[__imp__FunctionName] instruction. This tiny stub of a function satisfies the external

reference and in turn generates an external reference to __imp__FunctionName , which is

resolved by the same import library to an entry in the imported function table. When the

module is loaded, then, the import is resolved to a function pointer and stored in

__imp__FunctionName , and when the compiler-generated code calls the FunctionName

function, it calls the stub which trampolines (via the indirect call) to the real function entry

point in the destination DLL. Note that with a naive compiler, if your code tries to take the

address of an imported function, it gets the address of the FunctionName stub, since a naive

compiler simply asks for the address of the FunctionName symbol, unaware that it’s really

coming from an import library.

https://devblogs.microsoft.com/oldnewthing/20060721-06/?p=30433
http://blogs.msdn.com/oldnewthing/archive/2006/07/17/668284.aspx
http://www.barclayagency.com/sedaris.html

2/2

Next time, we’ll look at the dllexport declaration specifier and how a less naive compiler

generates code for an imported function.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

