
1/2

November 2, 2006

Make sure you disable the correct window for modal UI
devblogs.microsoft.com/oldnewthing/20061102-02

Raymond Chen

Some time ago,
I was asked to look at two independent problems with people trying
to do

modal UI manually.
Well, actually, when the issues were presented to me,
they weren’t

described in quite that way.
They were more along the lines of,
“Something strange is

happening in our UI. Can you help?”
Only in the discussion of the scenarios did it become

apparent that it was improper management of modal UI that
was the cause.

We already saw
one subtlety of managing modal UI manually,
namely that you have to

enable and disable the windows in the correct
order.
That wasn’t the root of the problems I

was looking at,
but enabling and disabling windows did play a major role.

When we
took a look at the dialog loop,
the first steps involved manipulating the

hwndParent
parameter to ensure that we enable and disable the correct window
at the

correct time.

if (hwndParent == GetDesktopWindow())

 hwndParent = NULL;

if (hwndParent)

 hwndParent = GetAncestor(hwndParent, GA_ROOT);

HWND hdlg = CreateDialogIndirectParam(hinst,

 lpTemplate, hwndParent, lpDlgProc,

 lParam);

BOOL fWasEnabled = EnableWindow(hwndParent, FALSE);

In both cases, the first two “if” statements were missing.
We already saw
the danger of

disabling the desktop window,
which is what the first “if” statement protects against.
But the

specific problem with modal UI was being caused by
the missing second “if” statement.

Both of the problems boiled down to somebody passing a child
window as the hwndParent

and the code doing
manual modal UI failing to convert this window to a top-level window.
As

a result, when they did the EnableWindow(hwndParent, FALSE) ,
they disabled a child

window,
leaving the top-level window enabled.

https://devblogs.microsoft.com/oldnewthing/20061102-02/?p=29143
http://blogs.msdn.com/oldnewthing/archive/2004/02/27/81155.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/04/01/404531.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/02/24/79212.aspx

2/2

The two problems had the same root cause but manifested themselves
differently.
The first

problem led to strange behavior because
the user could still interact
with the top-level

window since it was still enabled.
Sure, a portion of the window was disabled (the portion

controlled by the child window passed as hwndParent),
but the caption buttons still

worked, as did many of the other
controls on the window.

In the second case,
disabling the wrong window created a different problem:
When the modal

UI was complete,
the window manager activated the top-level window that was the
owner of

the modal window since that window was never disabled.
This caused the top-level window

to receive a WM_ACTIVATE
message,
which it handled by putting focus on the control that

had focus
when the top-level window was deactivated.
Unfortunately, that window was the

window that was passed
as the hwndParent ,
which was disabled by mistake.
The attempt to

restore focus failed,
and when the manual modal UI finally finished up and enabled
the child

window, it was too late.
You wound up with focus nowhere and a dead keyboard.
This second

problem was
reported as simply “ SetFocus is not working.”
Only after peeling back a few

layers (and application of some
psychic powers) did the root cause emerge.

Now, even though this was a subtle problem,
you already knew all the pieces that went into it

since I had
covered them earlier.
And as for those psychic powers that I used?
It’s really not

that magic.
In this case of psychic debugging, I worked backwards.
In response to the report

that
 SetFocus was not working,
the next set of questions was to determine why.
Is it a valid

window handle?
Does the window belong to your thread?
Is it enabled?

Aha, the window isn’t enabled.
That’s when the customer also mentioned that they were

doing
this inside a WM_ACTIVATE handler.
If you’re gaining activation, who were you gaining

it from?
Oh, a modal dialog, you say?
One that you’re managing manually?
Once I discovered

that they were trying to manage modal UI manually,
I suspected that they were disabling the

wrong window,
since that fit all the symptoms and it’s something that people tend
to get

wrong.

Most of what looks like psychic debugging is really just
knowing what people tend to get

wrong.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2005/02/23/378866.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

