
1/3

June 27, 2007

Those who do not understand the dialog manager are
doomed to reimplement it, badly

devblogs.microsoft.com/oldnewthing/20070627-00

Raymond Chen

A customer wanted to alter the behavior of a multi-line edit control
so that it did not treat a

press of the Tab key as a request to insert
a tab character but rather treated it as a normal

dialog navigation key.
The approach the customer took was to subclass the edit control
and

intercept the Tab key:

LRESULT CALLBACK SubclassWndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uMsg) {

 case WM_KEYDOWN:

 if (wParam == VK_TAB) {

 // Pressed the TAB key - tab to next control

 SetFocus(GetNextDlgTabItem(

 GetParent(hwnd), hwnd, FALSE));

 return 0; // message handled

 }

 }

 return CallWindowProc(...);

}

There are many things wrong with this approach.
You can spend quite a lot of time nitpicking

the little
details,
how this code
fails to set focus in a dialog box properly,
how it fails to take

nested dialogs into account,
how it fails to handle the Shift+Tab navigation key,
how it

blatantly assumes that the control is part of a dialog
box in the first place!
But all of these

little details are missing the big picture:
Instead of fighting against the dialog manager and

reimplementing all the parts we want to keep and ignoring the
parts we want to skip, we

should be working with the
dialog manager and expressing our intentions in the manner
the

dialog manager expects.

It’s the difference between ordering a hamburger without pickles
and ordering a hamburger

with pickles, and then carefully picking
the pickles off the burger when you get it.

https://devblogs.microsoft.com/oldnewthing/20070627-00/?p=26243
http://blogs.msdn.com/oldnewthing/archive/2004/08/02/205624.aspx

2/3

In this case, we want to prevent the edit control from saying
“Give me the Tab key.”
We saw

last time that this is done either by
(1) setting the DLGC_WANTTAB dialog code
or by

(2) responding
with DLGC_WANTMESSAGE when given a Tab key message.
Therefore, to tell

the dialog manager to not to treat the tab key
specially, just turn off those two behaviors.

LRESULT CALLBACK SubclassWndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 LRESULT lres;

 switch (uMsg) {

 case WM_GETDLGCODE:

 lres = CallWindowProc(...);

 lres &= ~DLGC_WANTTAB;

 if (lParam &&

 ((MSG *)lParam)->message == WM_KEYDOWN &&

 ((MSG *)lParam)->wParam == VK_TAB) {

 lres &= ~DLGC_WANTMESSAGE;

 }

 return lres;

 }

 return CallWindowProc(...);

}

After asking the original control what behavior it thinks it wants,
we turn off the

DLGC_WANTTAB flag; this takes care of
part (1).
Next, we check whether the message is a

press of the Tab key.
If so, then we turn the DLGC_WANTMESSAGE flag off;
this takes care of

part (2).

This is certainly less code than would need to have been written
to address all of the little

concerns noted earlier,
and it does it by completely sidestepping the task of trying
to emulate

the dialog manager and instead just cooperating with
the dialog manager to get the behavior

you want.
This principle of “If you know how a system is meant to work,
you can work with it

rather than against it, and everybody will be
happier for it”
is something I’ve been trying to

convey through this web site
and
my book.
Knowing how something was intended to be used

allows you to be
a more effective programmer.

Exercise:
Why didn’t we just write this instead?

http://blogs.msdn.com/oldnewthing/archive/2006/12/07/1233002.aspx

3/3

LRESULT CALLBACK SubclassWndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 LRESULT lres;

 switch (uMsg) {

 case WM_GETDLGCODE:

 lres = CallWindowProc(...);

 lres &= ~DLGC_WANTTAB;

 if (wParam == VK_TAB) {

 lres &= ~DLGC_WANTMESSAGE;

 }

 return lres;

 }

 return CallWindowProc(...);

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

