
1/2

July 5, 2007

QueryPerformanceCounter is not a source for unique
identifiers

devblogs.microsoft.com/oldnewthing/20070705-00

Raymond Chen

This article happened to catch my eye:

I needed to generate some unique number in my application. I could use GUID, but it was too
large for me (I need to keep lots of unique identifiers). I found something like this:

[System.Runtime.InteropServices.DllImport("Kernel32.dll")]
private static extern int
 QueryPerformanceFrequency(ref System.Int64 frequency);
[System.Runtime.InteropServices.DllImport("Kernel32.dll")]
private static extern int
 QueryPerformanceCounter(ref System.Int64 performanceCount);
public static long GenerateUniqueId()
{
 System.Int64 id = 0;
 QueryPerformanceFrequency(ref id);
 QueryPerformanceCounter(ref id);
 return id;
}

This code generates Int64 (long) unique number (at least I hope it is unique). The uniqueness is
in the scope of process. So two processes can generate the same number, but it should be always
unique in a single process (I am not sure about two threads invoking the same
GenerateUniqueId() method.

QueryPerformanceCounter retrieves the current value of the high-resolution performance

counter, but there is no guarantee that every call to the function will return a different

number.

The frequency of the high-resolution performance counter is determined by the HAL. You

might think that the RDTSC instruction would be perfect for this purpose, since it returns

the number of CPU clock ticks, a value that always increases at a very high rate. But there are

many problems with RDTSC. For example, variable-speed processors mean that the rate at

https://devblogs.microsoft.com/oldnewthing/20070705-00/?p=26143
http://geekswithblogs.net/marcel/archive/2006/09/29/92729.aspx
http://msdn.microsoft.com/library/en-us/directx9_c/Game_Timing_and_Multicore_Processors.asp

2/2

which CPU clock elapse varies over time. A million clock ticks might take one millisecond

when the computer is running on wall power, but two milliseconds when running on battery

power.

If the HAL can’t use RDTSC , what does it use instead? Well, as I said, it’s up to the HAL to

find something suitable. Older motherboards have to make do with the programmable

interval timer which runs at 1,193,182 ticks per second (approximately 0.8 microseconds per

tick). Newer motherboards can use the ACPI timer which runs at 3,579,545 ticks per second

(approximately 0.3 microseconds per tick).

One of the machines in my office uses the ACPI timer for its high-resolution performance

counter, so I threw together a quick program to see how close I can get to outracing the ACPI

timer by calling QueryPerformanceCounter in rapid succession. With a 1.80GHz

processor, the computer manages to call QueryPerformanceCounter quickly enough that

only four ticks of the ACPI timer elapse between consecutive calls. We’re getting into

shouting range of being able to call QueryPerformanceCounter twice and getting the same

value back from the ACPI timer. Of course, if the computer had been using the

programmable interval timer, it would have been within spitting distance, and upgrading to a

3GHz processor would have taken us over the top.

In other words, you may be lucky today that your CPU isn’t fast enough to call

QueryPerformanceCounter twice and get the same value back, but it sure looks like we’re

threatening to get there soon.

Then again, all this back-of-the-envelope calculation is superfluous. All you need is a

machine with multiple processors. Get two of the processors to call

QueryPerformanceCounter at the same time (or nearly so), and they’ll get the same timer

value back.

If you want to generate unique 64-bit values, you can just use InterlockedIncrement64 .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

