
1/4

April 19, 2010

Why does the wireless connection dialog ask for your
password twice?

devblogs.microsoft.com/oldnewthing/20100419-00

Raymond Chen

Martin wonders
why the wireless networking dialog asks you to type your password twice

when connecting to an existing network.

Yeah, that bothers me too, and I don’t know why either.

But while we’re on the topic of wireless networking,
I thought I’d share a little program that

is just as useless
as my answer above.
(If other people get to hijack the topic, then I want to

also.)

Back in the early days of Windows XP, I found that my
wireless networking adapter would

constantly disconnect and
reconnect.
I never figured out why, but I did have a theory.

(Theory:
The wireless zero configuration service saw another access point
and said,
“Hey,

that access point over there looks much nicer than then
one I’m currently connected to.
I’m

going to drop my current connection and see if maybe that other
access point will go out with

me.”
And then it went up to that other access point and asked it out
on a date.
When the

other access point said no, it came crawling back to the
original access point.
Repeat.)

Anyway, to avoid this problem
(which went away after a while for reasons unclear;
maybe it

was fixed, maybe whatever situation triggered the problem
went away, I didn’t bother

investigating),
I wrote a program which did two very simple things:

1. If the wireless networking adapter was connected to an access
point, then turn off the

wireless zero configuration service.

2. If the wireless networking adapter was not connected to an access
point, then turn on

the wireless zero configuration service.

In other words, it automates the process described
on this Web page.
(I like how that article

was
copied in its entirety to another site, which replaced the author’s
name. Now that’s

chutzpah.)

https://devblogs.microsoft.com/oldnewthing/20100419-00/?p=14303
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#1239342
http://www.wi-fiplanet.com/tutorials/article.php/3573316
http://cws.internet.com/article/3115-4447.htm

2/4

Mind you,
the program really is no longer interesting in and of itself
any more because the

underlying
problem went away, but I thought it could serve as an
illustration of how you can

put together some simple things to make
a useful tool.

First, I changed the security descriptor on the wireless zero
configuration service so that my

account had permission to turn it on
and off.

Second, I added this code to
a program that hangs out my Startup group which monitors

various things
I like to monitor.
(I have one program that monitors several things just to cut

down on the
number of processes hanging around on my machine.)
The code has been

compressed and reformatted to get rid of the uninteresting
parts.

class MonitorWireless

{

public:

 MonitorWireless()

 : m_hWait(NULL)

 {

 ZeroMemory(&m_o, sizeof(m_o));

 }

 ~MonitorWireless()

 {

 if (m_hWait) UnregisterWaitEx(m_hWait, INVALID_HANDLE_VALUE);

 if (m_o.hEvent) CloseHandle(m_o.hEvent);

 }

 BOOL Initialize();

protected:

 static void CALLBACK s_OnChange(PVOID lpParameter, BOOLEAN)

 {

 MonitorWireless *self =

 reinterpret_cast<MonitorWireless*>(lpParameter);

 self->CheckIPAddress(); // something changed - check it again

 }

 void CheckIPAddress();

 static void StartStopService(BOOL fStart);

private:

 HANDLE m_hWait;

 OVERLAPPED m_o;

}

The class definition is all very boring.
Our class has an OVERLAPPED structure which we use

to register for IP address change notifications, and it has a
handle to a registered wait, which

takes advantage of the thread
pool to reduce the number of threads used by the process.

3/4

BOOL MonitorWireless::Initialize()

{

 m_o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

 if (!m_o.hEvent) return FALSE;

 if (!RegisterWaitForSingleObject(&m_hWait, m_o.hEvent,

 s_OnChange, this, INFINITE, 0)) return FALSE;

 CheckIPAddress();

 return TRUE;

}

When the object is initialized, it creates the handle that we will
ask to be set whenever the

computer’s IP address changes, and
then registers a wait on that handle with a callback

function.
When the event is signaled, we check the IP address.
And to start the ball rolling,

we check the IP address at
initialization.

void MonitorWireless::CheckIPAddress()

{

 ULONG ulSize = 0;

 if (GetIpAddrTable(NULL, &ulSize, 0) ==

 ERROR_INSUFFICIENT_BUFFER) {

 PMIB_IPADDRTABLE piat = reinterpret_cast<PMIB_IPADDRTABLE>

 (LocalAlloc(LMEM_FIXED, ulSize));

 if (piat) {

 if (GetIpAddrTable(piat, &ulSize, 0) == ERROR_SUCCESS) {

 BOOL fFound = FALSE;

 for (DWORD dwIndex = 0; dwIndex < piat->dwNumEntries;

 dwIndex++) {

 PMIB_IPADDRROW prow = &piat->table[dwIndex];

 if (prow->dwAddr == 0) continue;

 if ((prow->wType & (MIB_IPADDR_DYNAMIC |

 MIB_IPADDR_DELETED |

 MIB_IPADDR_DISCONNECTED)) !=

 MIB_IPADDR_DYNAMIC) continue;

 fFound = TRUE;

 break;

 }

 StartStopService(!fFound);

 }

 LocalFree(piat);

 }

 }

 HANDLE h;

 NotifyAddrChange(&h, &m_o);

}

We start by getting the IP address table (doing the standard two-step
of first asking how

much memory we need to hold it, allocating the memory,
and then filling the buffer) and

walking through each IP address.
If we find an entry with an IP address that is dynamic,
not

deleted, and not disconnected, then we declare ourselves happy;
otherwise we are sad.
If we

are happy, then we stop the wireless zero configuration service;
if we are sad, then we start it.

4/4

void MonitorWireless::StartStopService(BOOL fStart)

{

 SC_HANDLE sc;

 sc = OpenSCManager(NULL, NULL, SC_MANAGER_CONNECT |

 SC_MANAGER_ENUMERATE_SERVICE);

 if (sc) {

 SC_HANDLE scWzcsvc = OpenService(sc, TEXT("wzcsvc"),

 fStart ? SERVICE_START

 : SERVICE_STOP | SERVICE_QUERY_STATUS);

 if (scWzcsvc) {

 if (fStart) StartService(scWzcsvc, 0, NULL);

 else StopService(scWzcsvc);

 CloseServiceHandle(scWzcsvc);

 }

 CloseServiceHandle(sc);

 }

}

To start or stop the service, we first connect to the service
control manager, open the service

we want to start/stop,
and then, well, start or stop it.

There is already a StartService function,
but no StopService function, so I wrote my

own:

void StopService(SC_HANDLE sc)

{

SERVICE_STATUS ss;

if (QueryServiceStatus(sc, &ss) &&

 ss.dwCurrentState != SERVICE_STOPPED &&

 ss.dwCurrentState != SERVICE_STOP_PENDING)

 ControlService(sc, SERVICE_CONTROL_STOP, &ss);

}

If the service is not already stopped (or stopping),
then we tell it to stop.

And there you have it, a program that you don’t need any more.
But the point here was more

to show how you can put together
some basic elements to solve a simple problem.

Techniques illustrated:

Registering a wait in the thread pool.

Registering asynchronously for IP address changes.

Starting and stopping a service.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

