
1/4

July 2, 2010

Instead of trying to figure out what shortcut class to use,
just ask the shell to do it for you

devblogs.microsoft.com/oldnewthing/20100702-00

Raymond Chen

If a shell namespace item has the
 SFGAO_LINK attribute,
then it is a shortcut to another

location.
The most common type of shortcut is the .lnk file,
which you can load by creating

the
 CLSID_ShellLink object and using
 IPersistFile::Load ,
but what if you have some

other type of shortcut?
How do you know what CLSID to use?

Since anybody can create their own shortcut file types,
a hard-coded list mapping file

extensions to CLSIDs is
not going to work for long.
But fortunately, you don’t have to know

how to look up the CLSID
for a particular shortcut;
you can just ask the namespace to do it

for you
by asking for the IShellLink UI object.

https://devblogs.microsoft.com/oldnewthing/20100702-00/?p=13523

2/4

#include <windows.h>

#include <shlobj.h>

#include <ole2.h>

#include <stdio.h>

#include <tchar.h>

#include <shellapi.h>

// GetUIObjectOfFile function incorporated by reference
int __cdecl _tmain()

{

 int argc;

 LPWSTR *argv = CommandLineToArgvW(GetCommandLineW(), &argc);

 if (argv == NULL || argc != 2) return 0;

 if (SUCCEEDED(CoInitialize(NULL))) {

 IShellLink *psl;

 if (SUCCEEDED(GetUIObjectOfFile(NULL, argv[1], IID_PPV_ARGS(&psl)))) {

 TCHAR sz[MAX_PATH];

 if (SUCCEEDED(psl->GetPath(sz, MAX_PATH, NULL, 0))) {

 _tprintf(TEXT("-> %ls\n"), sz);

 }

 else _tprintf(TEXT("GetPath failed\n"));

 psl->Release();

 }

 else _tprintf(TEXT("GetUIObjectOf failed\n"));

 CoUninitialize();

 }

 LocalFree(argv);

 return 0;

}

I’ve limited myself to files here for simplicity of exposition,
and I assume that you’ve passed a

fully-qualified path on the
command line.
Of course, you can have shortcuts to non-file

objects as well,
and for those shortcuts,
 IShellLink::GetPath
is unlikely to return an

actual
file path.
(In fact, for things like shortcuts to the Control Panel,
they’re unlikely to

return anything at all.)
I’ve also used the CommandLineToArgvW function
instead of the

built-in argc and argv
because the GetUIObjectOfFile function wants
a Unicode file

name, but the C runtime’s argv
is a TCHAR * string, which might not be Unicode.

Let’s take this program for a spin.

Warning: I am using hard-coded paths.
In real life, you would use appropriate functions to

obtain
the paths to the files you care about.
(Actually, in real life, you probably will have a

pidl to the item
rather than a path, so the issue of paths disappears.)

>set STARTMENU=%APPDATA%\Microsoft\Windows\Start Menu\Programs

>scratch "C:\ProgramData\Microsoft\Windows\Start
Menu\Programs\Accessories\Calculator.lnk"

-> C:\Windows\System32\calc.exe

>scratch "%STARTMENU%\Internet Explorer.lnk"

-> C:\Program Files\Internet Explorer\iexplore.exe

http://blogs.msdn.com/oldnewthing/archive/2004/09/20/231739.aspx

3/4

Okay, these are your regular .lnk files,
so there’s nothing special going on here.
Let’s try

something fancier, like a symbolic link.

>echo > blah.txt

>mklink other blah.txt

symbolic link created for other <<===>> blah.txt

>scratch "%CD%\other"

-> C:\test\blah.txt

Via the Add Network Location wizard,
I created a network location (which is internally

represented
as a Folder Shortcut).
Let’s see what happens with that:

> scratch "%APPDATA%\Microsoft\Windows\Network Shortcuts\Tools"

-> \\live.sysinternals.com\tools

How about Internet shortcuts?

> scratch "%USERPROFILE%\Favorites\MSN Websites\MSN.url"

-> http://go.microsoft.com/fwlink/?LinkId=54729

OneClick shortcuts?
(MS Space is an internal application which lets you view floor
plans of

every Microsoft building,
book conference rooms,
reserve
touchdown space,
that sort of

thing.)

> scratch "%STARTMENU%\MS Space.appref-ms"

GetUIObjectOf failed

Huh? What happened?

It so happens that the people who wrote the shortcut handler for
OneClick applications only

bothered to implement the Unicode
version of the IShellLink interface.
We built our

application as ANSI, so our attempt to get the
 IShellLinkA interface failed.
But that’s

easily worked around:

#define _UNICODE

#define UNICODE

#include <windows.h>

#include <shlobj.h>

#include <ole2.h>

...

(In real life, your program would probably first ask for the Unicode
interface, and if the call

fails, then ask for the ANSI interface.)

With the Unicode version of the program, the shortcut resolves:

> scratch "%STARTMENU%\MS Space.appref-ms"

-> C:\Users\...\MSSpaceDeploy.exe

http://blogs.msdn.com/oldnewthing/archive/2009/05/15/9617531.aspx
http://microsoftjobsblog.com/blog/employees-score-with-touchdown-space/
http://blogs.msdn.com/oldnewthing/archive/2004/02/12/71851.aspx

4/4

(I elided some of the ugly path because, well, it’s ugly.
The full unabbreviated path is 139

characters,
most of which is just hex digits.)

Anyway,
the point for today wasn’t the minutiae of obtaining
shortcut targets from shell

namespace items.
It was the principle that if you want something from the shell
namespace,

the
 IShellFolder::GetUIObjectOf
method will often get
it for you.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

