
1/2

October 8, 2010

Why does my asynchronous I/O request return TRUE
instead of failing with ERROR_IO_PENDING?

devblogs.microsoft.com/oldnewthing/20101008-00

Raymond Chen

A customer reported that their program was not respecting the FILE_FLAG_OVERLAPPED

flag consistently:

My program opens a file handle in FILE_FLAG_OVERLAPPED mode, binds it to an I/O
completion callback function with BindIoCompletionCallback , and then issues a
WriteFile against it. I would expect that the WriteFile returns FALSE and Get‐
LastError() returns ERROR_IO_PENDING , indicating that the I/O operation is being
performed asynchronously, and that the completion function will be called when the operation
completes. However, I find that some percentage of the time, the call to WriteFile returns
TRUE , indicating that the operation was performed synchronously. What am I doing wrong? I

don’t want my thread to block on I/O; that’s why I’m issuing asynchronous I/O.

When you specify FILE_FLAG_OVERLAPPED , you’re promising that your program knows how

to handle I/O which completes asynchronously, but it does not require the I/O stack to

behave asynchronously. A driver can choose to perform your I/O synchronously anyway. For

example, if the write operation can be performed by writing to cache without blocking, the

driver will just copy the data to the cache and indicate synchronous completion. Don’t worry,

be happy: Your I/O completed even faster than you expected!
Even though the I/O

completed synchronously, all the asynchronous completion notification machinery is still

active. It’s just that they all accomplished their job before the WriteFile call returned.

This means that the event handle will still be signaled, the completion routine will still run

(once you wait alertably), and if the handle is bound to an I/O completion port, the I/O

completion port will receive a completion notification.

You can use the SetFileCompletionNotificationModes function to change some aspects

of this behavior, giving some control of the behavior of the I/O subsystem when a potentially-

asynchronous I/O request completes synchronously.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20101008-00/?p=12583
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

