Life is Pane: Persistence via Preview Handlers

£ posts.specterops.io/life-is-pane-persistence-via-preview-handlers-3c0216c5ef9e-b73a9515¢9a8

&

Matt Hand
Oct 21, 2021

October 21, 2021

People can have some strong preferences about how their files are laid out in Explorer. Some like the compact
Details view. Others like the descriptive Content view with the Details pane. Some insane people even use Small
Icons). Explorer offers dozens of customizations to how Windows users can view the contents of the filesystem,
but a feature which became particularly interesting to us was the Preview Pane.

The preview pane allows users to have a quick peek at the content of a selected file without actually having to open
it. This feature is disabled on default Windows 10 builds, but can be enabled in the Explorer menu under
View—Preview pane.

File) View Video Tools

~
E. Bl Preview pane [Extra large icons B Large icons BB Medium icons Group by ~ Item check boxes ' '
n Small icons II List. I Details columns * File name ex 3

. - =
a;;%ﬂe 1on | Details pane Tiles B= content

?

ns

Hide selected = Optio

3y all columns to fit || Hidden items items -
Panes Layout Current view

< v 4 ThisPC » Music

Name . Date Type Size Length

B 1 Hello MP4 File 9614KB 00:04:57

EEHlp

Blo o
olc |l.
rikl
2 M

While this seems relatively simple at face value, it is anything but under the hood. For example, how does
Windows know how to display the contents of certain filetypes but not others? Are the previews controlled by
Explorer or is it done in another process? Are these handlers abusable? We spent a few days exploring preview
handlers to gain a deeper understanding of how they work and answer these questions.

Behind the Pane

The first step in our research was to figure out exactly what was going on when Explorer wanted to present a
preview of a file to the user. To start, we enabled the preview pane, navigated to a folder with filetypes which are
known to display previews (we used .CONTACT filetypes as it’s installed on Windows by default, but there are
many more that could be used), launched Procmon and Process Hacker, and observed the system’s behavior.
While our findings aren’t as complete as they could be, the general gist is as follows:

1. Explorer queries the preview handlers for the associated filetype identified by the subkey {8895b1c6-b41f -
4clc-a562-0d564250836f} , first in HKCU and then in HKCR, and takes its default value.

1/9

https://posts.specterops.io/life-is-pane-persistence-via-preview-handlers-3c0216c5ef9e-b73a9515c9a8
https://medium.com/@matterpreter?source=post_page-----b73a9515c9a8--------------------------------
https://medium.com/@matterpreter?source=post_page-----b73a9515c9a8--------------------------------
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://github.com/processhacker/processhacker

] Event Properties - O *
P

Event Process Stack

Date: 9/12/2021 8:16:57.4300939 AM

Thread: 12056

Class: Registry

Operation: RegQueryvalue

Result: SUCCESS

Path: HKCR\, contact\shellex\{8895b 1c6-b41f-4c 1c-a56 2-0d 5642 508361} \(Defau
Duration: 0.0000027

Type: REG_SZ

Length: 78

Data: {13D3C4B5-B179-49ebb-BFG2-F704173E7448}

2. Explorer queries the value associated with the CLSID collected from the extension ({13D3C4B8-B179-4ebb-
BF62-F704173E74483} for .CONTACT files) in the list of registered preview handlers. This list resides in

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers\ and is used as an optimization by
the OS according to Microsoft.

=T Event Properties - O x
B

Event Process Stack

Date: 9/12/2021 8:16:57.4802792 AM

Thread: 12056

Class: Registry

Operation: RegQueryValue

Result: BUFFER. OVERFLOW

Path: HKLM\SOFTWARE \Microso ft\Windows\CurrentVersion\PreviewHandlers\{ 13D3C4B8-8 179-4EBB-BF6 2-F 70417 3E 7443}
Duration: 0.0000033

Length: 12

3. Explorer then queries the InProcServer32 value of the CLSID.

=7 Event Properties — O *
p

Event Pprocess Stack

Date: 9/12/2021 8:16:57.4839123 AM

Thread: 5372

Class: Registry

Operation: RegQueryValue

Result: SUCCESS

Path: HKCR\CLSIDY{ 13D3C4B8-B 179-9ebb-BF6 2-F 70417 3E 7448 InprocServer 32\ Default)
Duration: 0.0000028

Type: REG_EXPAMD_S5Z

Length: 7a

Data: %CommonProgramFiles3u\Systemiwab32.dl

4. Explorer finally hands things off to the DCOM Server Process Launcher service (DcomLaunch) which collects
the AppID associated with the CLSID.

2/9

https://docs.microsoft.com/en-us/windows/win32/com/com-class-objects-and-clsids
https://docs.microsoft.com/en-us/windows/win32/shell/how-to-register-a-preview-handler#:~:text=Step%203

=] Event Properties — O >
P

Event Process Stack

Date: 9/12/2021 8:16:57.4889454 AM

Thread: 1204

Class: Registry

Operation: RegQueryValue

Result: SUCCESS

Path: HKCRVCLSID\{ 130304656 179-4ebb-BF6 2-F 7041736 7448 \AppID
Duration: 0.0000024

Type: REG_SZ

Length: 73

Data: {6d2b5079-2f0b-43dd-ab7f-97cec514d30b}

5. DcomLaunch references the D11Surrogate value of the associated AppID, located in HKCR\AppID\ . Note
that {6d2b5079-2f0b-48dd-ab7f-97cec514d30b} isthe default for native x64 preview handlers. WOW64
handlers use {534A1E02-D58F-44f0-B58B-36CBED287C7C} .

i Event Properties — O X

Event Process Stack

Date: 9/12/2021 8:16:57.49665445 AM

Thread: 3356

Class: Registry

Operation: ReqQueryValue

Result: SUCCESS

Path: HKCR\AppID\{6d 2b5079-2f0b-48dd-ab 7f-97cec514d30b} \DSurrogate
Duration: 0.0000023

Type: REG_EXPAMND_S5Z

Length: 70

Data: FSsystemAootYe\system32\prevhost. exe

6. DcomLaunch then launches the surrogate process, PREVHOST.EXE , passing the command line arguments
{HANDLER-INPROCSERVER32-CLSID} -Embedding

=T Event Properties — O >
P

Event Process Stack

Date: 9/12/2021 8:16:57.4993165 AM

Thread: 3356

Class: Process

Operation: Process Create

Result: SUCCESS

Path: C:\WINDOWS\system32\prevhost. exe

Duration: 0,0000000

PID: 6804

Command line: C:\WINDOWS \system32\prevhost.exe {1303C4B8-B 179-4EBB-BFo2-F704173E7448} Embedding

7. PREVHOST.EXE loads the in-process COM server referenced by the CLSID.

3/9

£ Event Properties — O

Event Process Stack

Date: 9/12/2021 8:16:57. 5366589 AM

Thread: 4448

Class: Process

Operation: Load Image

Result: SUCCESS

Path: C:\Program Files\Common Files\Systemwab32.dll
Duration: 0.0000000

Image Base: Ox7ff8d8510000

Image Size: Oxdf0o0

8. PREVHOST.EXE opens the file to be previewed.

=1 Event Properties — O *
P

Event Process Stack

Date: 9122021 8:16:57. 5628975 AM
Thread: 4443

Class: File System

Operation: CreateFile

Result: SUCCESS

Path: C:\Users\Matt\Desktop\test.contact
Duration: 0.0000169

Desired Access: Generic Read
Disposition: Open
COptions: Synchronous IO Mon-Alert, Non-Directory File
Attributes: M
ShareMode: Read, Delete
AllocationSize: nfa
OpenR.esult: Opened

At this point, the preview handler DLL is mapped into the surrogate process, PREVHOST.EXE , and the file can be
processed and passed back to Explorer’s preview pane. As mentioned before, there are many minor details not
covered both during and after loading the handle, but by this point we had a good idea how this could be abused.

Building Our Handler

Now that we had the general flow worked out, we could set out on building our own preview handler. Thankfully,
Microsoft published some pretty robust documentation and sample code which we could reference. While the
resources provided are extremely helpful, they are geared toward a developer writing production-ready preview
handlers and contain a lot of bloat required to make them work properly (e.g. adaptively resizing the preview
based on the preview pane’s size).

We really only needed a minimal example to test our theory, so we wrote a basic in-process COM server and
implemented the IPreviewHandler and IInitializeWithStream interfaces as described in Microsoft’s
documentation. While Microsoft states that the I0bjectwithSite , I0leWindow , and

IPreviewHandlerVisuals interfaces also need to be implemented, we found that this is not the case when only
code execution inside of the handler is required and the author doesn’t care about rendering a full preview in the
pane. To test our handler, the renderer function called by IPreviewHandler::DoPreview() simply spawns a
message box.

As with all things COM-related, we were then off to the registry to build out all of the keys needed to get our
handler running on the host. Again, Microsoft’s documentation helped quite a bit here, but we weren’t sure what
was an actual requirement versus a best practice. What we found was that the following registry keys and values

4/9

https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers
https://github.com/microsoft/Windows-classic-samples/tree/27ffb0811ca761741502feaefdb591aebf592193/Samples/Win7Samples/winui/shell/appshellintegration/RecipePreviewHandler
https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers#preview-handler-architecture

were required in order for our test message box to pop up:

Key Value Data Note

HKCU\Software\Classes\CLSID\(HANDLER-CLSID)\InProcServer32 @ C:\Window\Temp\Handler.dIl This should be the path to the preview handler DLL
on the host

HKCU\Software\Classes\CLSID\{HANDLER-CLSID}\InProcServer32 ThreadingModel Apartment

HKCU\Software\Classes\CLSID\(HANDLER-CLSID} ApplD {6d2b5079-2f0b-48dd-ab7f-97cec514d30b} This is the ApplD of prevhost.exe

HKCU\Software\Classes\.foo\ShellEx\{8895b1c6-b4 1f-4c1c-a562-0d564250836f} | @ {HANDLER-CLSID} Registers us as the preview handler for .FOO files

HKCU\Software\Microsoft\Windows\CurrentVersion\PreviewHandlers {HANDLER-CLSID} The data can be empty here, but it is suggested to
add a description of the handler

At this point, we had a functioning minimal POC of the preview handler targeting .SPECTEROPS files from which
we could build our capability.

I & < | Handler Example [prevhost.exe (4576) Properties — O *
Home | Share View Environment Handies = Disk and Network Comment
é]] & cut @ x I@ T New item ~ General Statistics Performance Threads Token Modules Memory
= %= Copy path * £ Easy access - =
Pin to Quick Copy Paste Move Copy Delete Rename New Pro Name Base address Size Description A
access [£] paste shortcut tg+ to- - folder
kernel.appcore.dil 0x7ffaeaced000 72kB AppModel AFI Host
cliebesrd Orgehize New || kernetszdl 0x7fface7e0000 756KB Windows NTBASE APL Clen...
KernelBase.dll 0x7ffaed1d0000 278 ... Windows NT BASE API Clien...
€« v 4 » ThisPC » Desktop » Handler Example Jocale.nls Ix27040000 BOAKE
Name - Dste modified Type Size msctf.dll 0x7ffaed3b0000 1.08... MSCTF Server DLL
Y msvep_win.dil Ox7ffaed130000 628kB Microsoft® C Runtime Library
| | matt.specterops 8/17/2021 5:35 PM SPECTEROPS File 1KB msvert.di 0x7ffaefS70000 632kB Windows NT CRT DLL
ndll.dll 0x7faef650000 1.96... NT Layer DLL
ntmarta.dll Ox7ffacbad0000 204kE Windows NT MARTA provider
ole32.dll 0x7ffaeecf0000 1.16... Microsoft OLE for Windows
oleaut32.dll Ox7ffaed760000 B820kE OLEAUT32.DLL
SpecterOps x OneCoreUAPCo... Ox7ffae5dal000 7.59... OneCoreUAP Common Prox...
prevhost.exe 0x7ff79f5b00.. 48 kB Preview Handler Surrog...
PreviewHandler.dl 0x7ffae1030000 36kB
e Hello from the SPECTEROPS preview handler! propsys.dl 0x7ff2e89b0000 988 kB Microsoft Property System
RO0000000000C. .. 0x272d26c0000 28kB
rpcrt4.dil 0x7ffaee1b0000 1.17... Remote Procedure Call Runt...
sechost.dll 0x7ffaed9d0000 620kB Host for SCM/SDDL/LSA Loo...
SHCare.dl 0x7ffacd6b0000 695KB SHCORE
shell32.dll 0x7ffacee20000 7.26... Windows Shell Common DIl v

Close

Leaving Low IL

The biggest hurdle with this technique is that, by default, preview handlers are run in a low integrity instance of
PREVHOST.EXE . This means that even though we can get code execution, our token’s integrity level (IL) will limit
us from accessing important parts of the operating system in the context of post-exploitation activities.

Thankfully for us, Microsoft realized that there are plenty of cases where running in low IL just won’t work for
some developers (e.g. needing to save a file to a directory marked with medium integrity label). To support these
use cases, developers are allowed to opt out of the low IL isolation behavior and instead be hosted in a medium IL
instance of the PREVHOST.EXE surrogate process. In order to opt out, Microsoft instructs developers to create a
new value, DisablelLowILProcessIsolation ,under HKCR\CLSID\{PREVIEW-HANDLER-CLSID} and setthe
valueto 1.

Because HKCR is really just a combination of HKCU\Software\Classes and HKLM\Software\Classes ,the
developer should theoretically be able to register the preview handler under the context of the current user by
creating the required registry keys and setting the values under HKCU . Then their handler will be executed in a
medium IL surrogate whenever the user previews their chosen file type. We tested this assumption by adding the

DisablelLowILProcessIsolation value to the preview handler we had previously registered. After setting the
value and refreshing the preview pane, we found that we were still running in low IL.

To try to figure out what was going on, we opened up Procmon and set a filter for registry operations whose path
ended with DisablelLowILProcessIsolation . We refreshed the preview pane but didn’t see anything. After
trying a few other file types, Procmon eventually caught EXPLORER.EXE querying the value of this key. The call
stack for this event can be seen below.

5/9

https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control#integrity-labels
https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers#server-model-options

Marmne PID Integrity

(] prevhost.exe T804 Low

SpecterOps >

e Low Integrity

We replaced the original message

box with one which shows the
token’s integrity level

Frame Module Location Address Path

K0 cunknown: [uffiff 207 06d 1608 (uffiff 20706 1608

K1 cunknowr OufFFF B0 70602031 (fFFF B0 7060231

K 2 cunknown T80 706c086b5 (T80 706c086b5

U3 ndidl NtGuenyValueKey + D14 x Afaefbed 104 CAWindows \SYSTEM3Z\ntdll.dll

u4 KERNELBASEdI MapPredefinedHandlelntemnal + (x54 O Afaed F01F CWindows'\System 32\KERNELBASE dll
us KERMNELBASE.dI RegQueryValugExW + Onf3 (e Afaed1feddl CWindows'\System32\KERNELBASE dll
us KERNELBASE Al RegGetValueW + 0x102 O Ffaed fel72 C:AWindows\System 32\KERNELBASE dil
uz SHELL3Z dl SHBrowseForFolderW + (x63b (O Afaefladbch CWindows'\System 32\SHELL32 dil
Ug SHELL3ZdI Ordinal887 + M lcc I FAfaeflalelc CA\Windows \System 3Z\SHELL32 dil
Usgs SHELL3ZdI Ordinal 859 + (x1df2e2 O Ffaef2cabd? C:AvWindows \System3Z\NSHELL32 dil

U 10 SHELL3ZdI Ordinal 859 + (12000 O Ffaef2cb340 C:AvWindows \System3Z\NSHELL32 dil

U 11 user3zdl CallWindowProcW + (x¥8 (AfaeebBei58 CWindows'System 32 wser32 dll

U112 user3zdl DispatchMessageW + (x259 x AfaeebBe299 C:AWindows\System 32 wser32.dll

U 13 SHELL3ZdI Ordinal859 + (k120332 O Ffaef 2cb 552 C:AvWindows \System3Z\NSHELL32 dil

U 14 shcoredl Ordinal 172 + (k465 (Afaedbde68S CWindows'\System 32 shcore dll

U 15 KERNEL32ZDLL BaseThreadinitThunk + (x14 I Afaee A 7034 CWindows'\System 32\KERNEL32.DLL
U 16 nididl RtlUserThreadStart + k21 O Haefba2651 CAWindows \SYSTEM3Z\ntdll.dll

Procmon’s symbol resolution is a little off here. Frame 7 (SHELL32!SHBrowseForFolder+0x63b) is the most
interesting for us as it resolves to an address inside of the function SHELL32!DoesExtensionOptOutOfLowIL .
The disassembly of this function can be seen below.

el

=
.

\

=

=)

MR R R R
=)

=]

|

Looking at the disassembly, it immediately became clear what was going wrong — only values in keys under HKLM

=

inted

{

_ fastcall DoesExtensionOptOutOfLowIL{const struct GUID *al)
unsigned int vl; // ebx

HKEY hkey; // [rsp+d4eh] [rbp-Céh] BY
DWORD pcbData; // [rsp+48h] [rbp-B&8h
h]

REF
]8B

int pvData; // [rsp+4Ch] [rbp-B4 BYRE
110

2]

YREF

F
unsigned __intlé v6[40]; // [rsp+56h r
WCHAR SubKey[168]; // [rsp+A8h] [rbp-6

bp-B@h] BYREF
h] BYREF
vl = @;
if ((int)SHStringFromGUIDW(z1, v6, 39i64) >= @
&8 (int)StringCchCopyW(Subkey, BxA7uibd, L"Software\\Classes\\CLSID\\") >= @
&& (int)StringCchCatW(SubKey, @xA7uigd, vi) »>= @
&% (!RegOpenKeyExW(HKEY_LOCAL_MACHINE, SubKey, @, 0x181u, &hkey)
|| 'RegOpenKeyExW(HKEY_LOCAL_MACHINE, SubKey, @, 8x281u, &hkey)))

L I e I A I e

.

!

n

N

pcbData = 4;
if (!RegGetValueW(hkey, 0164, L"DisablelowIlLProcessIsolation”, ©x18u, @i64, &pvData, &pcbDatza) && pvData)
vl = 1;
RegCloseKey(hkey);
¥

return vi;

O 00~

y

-

b

are checked. This means that not only are our hopes of dropping per-user persistence dead, but because HKLM is
only writable by administrators, we can’t even get around the low IL isolation as a normal user. We explored
Microsoft’s directions for providing a separate surrogate process to host our handler, but ultimately that effort
failed as those processes also spawns as low IL.

6/9

https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers#providing-your-own-process-for-a-preview-handler

Although this wasn’t the ideal outcome, we still had a persistence mechanism with which we could host our code
inside of a Microsoft-signed executable. Because of the privileges required, this will rarely see any use on initial
compromise and instead will be used later in the attack chain as we gain more privileged footholds in the
environment. Additionally, because we’re targeting HKLM , all users of the system will be affected and not just the
current user.

Operationalization

In order to take full advantage of this technique, our tooling is broken up into three distinct components — a
payload, a target file, and a dropper.

¢ The handler DLL which will be loaded in the surrogate and begin executing our malicious code. This is
dropped to disk in a user-defined location.

¢ Any file with an extension matching the one we’ve set up our handler for. This is also dropped to disk in an
arbitrary location, but one where the user will likely browse with Explorer.

The runner function inside of the handler was swapped from the testing message box to a shellcode runner. While
we’ll leave this as an exercise to the reader, there are a few hang-ups with this technique that are worth covering.

1. Explorer must restart after programmatically enabling the preview pane or the handler won't fire

2. Some type of mutex is needed as multiple instances of the handler can spawn unexpectedly and you’ll be
flooded with agents

3. Existing handler can be hijacked relatively seamlessly, but reverting the change isn’t always as simple as it
appears due to differences in implementations (e.g. Word uses different ProgIDs based on the file extension
instead of CLSIDs)

Proof of Concept

Detection

Detection of this technique relies heavily on monitoring changes to the registry. During our development of this
technique, we identified the base conditions for implementing a handler for persistence. While there are a good
amount of constants that we can monitor, this technique provides the actor with many chances to subvert
detection logic (e.g. using ProgIDs instead of CLSIDs). We'll first highlight the conditions from which a basic
detection can be built and then discuss some of the qualifying conditions that can be used to make the detection
more robust.

An important observation identified is that actors are not required to implement a preview handler for new file
extensions and can just as easily hijack existing handlers following roughly the same methodology.

Base Conditions

In order for this technique to both function and be useful for attackers (i.e. not executing in low IL), we can focus
our attention on a few specific registry keys while building out the base detection.

The first and most important event to monitor for the base detection is the value

DisableLowILProcessIsolation beingsetto 1 inanykeyin HKLM\Software\Classes\CLSID* .This key
must be set in HKLM in order for the surrogate process to be launched in medium IL, allowing the actor to interact
with the compromised host as a normal user. While the scope of this event is relatively large, we found that
instances of this value being set are exceedingly rare during our testing.

7/9

https://posts.specterops.io/thoughts-on-detection-3c5cab66f511#:~:text=Finding%20the%20Base%20Condition

The second registry key to target as part of the detection is HKCR\Software\Classes*\ShellEx\{8895b1c6-
b41f-4clc-a562-0d564250836f} . The creation of this key is a base condition of installing any preview handler
on the system. This can be for any filetype, including both existing or new extensions, but it must be set. Note that
it is important to use the wildcard filter as written and not to scope itas .* in an attempt to restrict detections to
only file extensions. This because filetypes (e.g. .foo) in the registry can be associated with ProgIDs (e.g. foo)
which function the same in the context of this technique.

The final base condition is adding the CLSID of the preview handler as a value to the
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers key for per-user installation or
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers for all users. This value will specify

the friendly name of the preview handler for debugging but it is not required to be set.

Classifying Conditions

While the base conditions provide a minimal amount of events which can be used to identify the installation of
preview handlers, there are a number of others that can provide supplemental context to the base detection, are
conditional, or may aid in an investigation.

The first of these conditions is that Explorer’s preview pane must be enabled. This is a requirement for this
technique to work. This should be considered an optional event because the victim may already have enabled this
feature, meaning that a registry event won’t occur. Normally disabled by default, enabling the preview pane can
provide a consistent choke point where we can observe an actor enabling it manually. To do this, we can monitor

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Modules\GlobalSettings\DetailsContainer

for the DetailsContainer valuebeingsetto 02 00 00 00 01 00 00 00 and
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Modules\GlobalSettings\Sizer for the
value of DetailsContainerSizer beingsetto 15 01 60 00 01 60 00 00 60 00 00 00 6d 02 00 00 .
These keys should only be set by EXPLORER.EXE under normal conditions.

Another event which can provide additional context is the surrogate process being set. This process is

PREVHOST.EXE under normal conditions, but the actor may register their own on the system to allow for a custom
application to handle the preview such as in the instance of a managed handler which needs to load a specific
version of the Common Language Runtime (CLR). This provides a valuable way for an actor to evade process or
image-based detections. This AppID should be set in HKLM\Software\Classes\CLSID* asthevalue AppID .If
the default PREVHOST.EXE is to be used, this should be {6d2b5079-2f0b-48dd-ab7f-97cec514d30b} for x64
handlers or {534a1e02-d58f-44f0-b58b-36¢ched287c7c} for x86 handlers running on an x64 host. If the actor
opts to use their own surrogate application, a key HKLM\Software\Classes\AppId* must be created with the
value D11Surrogate set to the path of their custom application. Regardless of the surrogate process, it will
always be launched with the command line arguments {MALICOUS-HANDLER-CLSID} -Embedded where the
CLSID is that of the registered handler DLL.

The final piece which could provide value, especially during an investigation, is the registration of the preview
handler DLL itself. This will be set as the default value in HKLM\Software\Classes\CLSID*\InProcServer32
and will point to a path on disk. It is worth noting that this event can be relatively noisy compared to the other
events generated by usage of this persistence technique. Additionally, this file doesn’t have to exist at the time of
installation and can be dropped whenever the actor is ready to operationalize the persistence mechanism.

Detection Operationalization

In testing the detection piece of this persistence technique, we stood up a Microsoft Defender instance in which we
ran a number of Kusto queries containing the base condition syntax listed above. We wanted to highlight the
following blindspots that we believe are inherent to Microsoft Defender’s default filtering configurations, and are
worth considering when building and tuning a MDE detection in your environment:

8/9

e —This prevented us from detecting the specific DisableLowILProcessIsolation registry value setto 1as
part of the first base detection. We were able to detect automatic changes in this registry key, such as benign
changes from MSIEXEC.EXE .

e — Since HKCR is a combination of the HKLM and HKCU hives, which MDE does log, the root cause of this
visibility gap is unknown at the time of this post. This gap prevents the second base condition key,

HKCR\Software\Classes*\ShellEx\{8895b1c6-b41f-4cic-a562-0d564250836f} , from being detected
in MDE.

e — This exists in either registry key
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers or
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers . This gap prevents the third

base condition from being detected as written in MDE.

With Microsoft Defender’s current log forwarding gaps, detection engineers will have the most success
corroborating high-level detections and pivoting to investigate suspicious activity. Below is a starting query that
detects one of the classifying conditions, the registration of the preview handler DLL itself in the

HKLM\Software\Classes\CLSID*\InProcServer32 key (Note: the exclusions included were specific to our
test environment and would need further tuning depending on your organization’s environment):

DeviceRegistryEvents| where RegistryKey has @”HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\” and RegistryKey
endswith “InProcServer32”| where InitiatingProcessFileName !in (“setup.exe”, “wzpreviewer65.exe”,
“winzip64.exe”,

“msiexec.exe”,"wzpreviewer64.exe”,"wzbgtcomserver64.exe”, "msmpeng.exe”, "microsoftedgeupdatecomregistershe.

project Timestamp, DeviceName, ActionType, InitiatingProcessFileName, RegistryKey, RegistryValueType,
RegistryvalueName, RegistryValueData, InitiatingProcessParentFileName, InitiatingProcessCommandLine

This detection example will detect the following Registry Keys:

dctionType : InitiatingProcessFileMame : Registrykey

RegistryKeyCreated regovri2exse HKEY_LOCAL MACHINESOF TWARE L s\ CLSIDA331 BEODA-9ES0-4D00- 9 B4 - EACEG558E 1 FlunprocServeri2
RegistryValueSet regavrid ene HIKEY_LOCAL_ MACHINESOF TWARECLisses\CLSIDY{331 BEODA-9E50-4D00- 0 B4- EACAEESIBE 1 F\nprocServer32
RegistryWalueSet regavrid exe HEEY_LOCAL MACHINESOF TWAREClasses\CLSIDA{331 BEODA-9ESD-4D00- 9 B4 - EACHEG558E1 FlinprocServer32

RegistryKeyCreated previewhandlerdropperess HKEY_LOCAL MACHINESOF TWAREClisses\CLSIDAABAIEFEE -2B4D-4 968 -BDBF-D2BETHFF S IFCInProcServer32
Registry¥alueSet previewhandlerdroppeene HKEY _LOCAL MAC HINESOF TWARD Chicse<CLSIDAABAIEFEE -SBAD-4 368 - BOBF- DZBETOFF S 1FC U nProcServer 312

RegistryValue5en prevewhandlerdioppetene HKEY_LOCAL MACHINESOF TWARE Clids e\ CLSIDYABAIEFEE -984D-496E-BOBF - DIBETIFF S IFCUnPracSenver32

And the following Registry Value Data and Command Line activity:

Regninyvaueliata InsatingProcenifanentfileame 1 InkbtingfrocentommandLing

Spaoley ene regrve 32 ewe 5 "CUWINDOWS system 3D spooldrves s, 3 FrimtCondig dir
COMNDOWSiyitemiNipechdiveriaf i PrintConhgdl ipecivorm g2 due A “CUNINDOWTuiibem 3 Dvigeahdii S f N PrintE kg dir
Bath wEaoivi e rege i eme /5 “CANMNOOWSuystem L hapoohdrivers ol D ArintC onfig i

o g PresewH analeTDREEsd Bk - $aTERUON mismbd: Rundied Pressswiiratler il -hie PrevewHande dl -4mam
Previratiandies di cndany PrevigwHandlerDroppe ror -entemion wumbe -Randier Prevewriandier il -file Preaewandendll -1zar
Apartrmann el e PreviewHandlerDroppes eoe -extenion wusbe: Bundier Prenewtiardier dil -file PrevewHandes dil e

Further research is needed to determine whether or not a viable detection could be built querying Sysmon logs or
Windows Registry events.

Acknowledgements

Thank you to Casey Smith for giving us the tip to explore preview handlers in the first place. Thank you to Dwight
Hohnstein for collaborating with us to turn the handler into something usable.

9/9

https://twitter.com/subTee
https://twitter.com/djhohnstein

