
1/9

October 21, 2021

Life is Pane: Persistence via Preview Handlers
posts.specterops.io/life-is-pane-persistence-via-preview-handlers-3c0216c5ef9e-b73a9515c9a8

Matt Hand

Oct 21, 2021

People can have some strong preferences about how their files are laid out in Explorer. Some like the compact

Details view. Others like the descriptive Content view with the Details pane. Some insane people even use Small

Icons 😱. Explorer offers dozens of customizations to how Windows users can view the contents of the filesystem,

but a feature which became particularly interesting to us was the Preview Pane.

The preview pane allows users to have a quick peek at the content of a selected file without actually having to open

it. This feature is disabled on default Windows 10 builds, but can be enabled in the Explorer menu under

View→Preview pane.

While this seems relatively simple at face value, it is anything but under the hood. For example, how does

Windows know how to display the contents of certain filetypes but not others? Are the previews controlled by

Explorer or is it done in another process? Are these handlers abusable? We spent a few days exploring preview

handlers to gain a deeper understanding of how they work and answer these questions.

Behind the Pane

The first step in our research was to figure out exactly what was going on when Explorer wanted to present a

preview of a file to the user. To start, we enabled the preview pane, navigated to a folder with filetypes which are

known to display previews (we used .CONTACT filetypes as it’s installed on Windows by default, but there are

many more that could be used), launched Procmon and Process Hacker, and observed the system’s behavior.

While our findings aren’t as complete as they could be, the general gist is as follows:

1. Explorer queries the preview handlers for the associated filetype identified by the subkey {8895b1c6-b41f-

4c1c-a562–0d564250836f} , first in HKCU and then in HKCR, and takes its default value.

https://posts.specterops.io/life-is-pane-persistence-via-preview-handlers-3c0216c5ef9e-b73a9515c9a8
https://medium.com/@matterpreter?source=post_page-----b73a9515c9a8--------------------------------
https://medium.com/@matterpreter?source=post_page-----b73a9515c9a8--------------------------------
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://github.com/processhacker/processhacker

2/9

2. Explorer queries the value associated with the CLSID collected from the extension ({13D3C4B8-B179–4ebb-

BF62-F704173E7448} for .CONTACT files) in the list of registered preview handlers. This list resides in

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers\ and is used as an optimization by

the OS according to Microsoft.

3. Explorer then queries the InProcServer32 value of the CLSID.

4. Explorer finally hands things off to the DCOM Server Process Launcher service (DcomLaunch) which collects

the AppID associated with the CLSID.

https://docs.microsoft.com/en-us/windows/win32/com/com-class-objects-and-clsids
https://docs.microsoft.com/en-us/windows/win32/shell/how-to-register-a-preview-handler#:~:text=Step%203

3/9

5. DcomLaunch references the DllSurrogate value of the associated AppID, located in HKCR\AppID\ . Note

that {6d2b5079–2f0b-48dd-ab7f-97cec514d30b} is the default for native x64 preview handlers. WOW64

handlers use {534A1E02-D58F-44f0-B58B-36CBED287C7C} .

6. DcomLaunch then launches the surrogate process, PREVHOST.EXE , passing the command line arguments

{HANDLER-INPROCSERVER32-CLSID} -Embedding .

7. PREVHOST.EXE loads the in-process COM server referenced by the CLSID.

4/9

8. PREVHOST.EXE opens the file to be previewed.

At this point, the preview handler DLL is mapped into the surrogate process, PREVHOST.EXE , and the file can be

processed and passed back to Explorer’s preview pane. As mentioned before, there are many minor details not

covered both during and after loading the handle, but by this point we had a good idea how this could be abused.

Building Our Handler

Now that we had the general flow worked out, we could set out on building our own preview handler. Thankfully,

Microsoft published some pretty robust documentation and sample code which we could reference. While the

resources provided are extremely helpful, they are geared toward a developer writing production-ready preview

handlers and contain a lot of bloat required to make them work properly (e.g. adaptively resizing the preview

based on the preview pane’s size).

We really only needed a minimal example to test our theory, so we wrote a basic in-process COM server and

implemented the IPreviewHandler and IInitializeWithStream interfaces as described in Microsoft’s

documentation. While Microsoft states that the IObjectWithSite , IOleWindow , and

IPreviewHandlerVisuals interfaces also need to be implemented, we found that this is not the case when only

code execution inside of the handler is required and the author doesn’t care about rendering a full preview in the

pane. To test our handler, the renderer function called by IPreviewHandler::DoPreview() simply spawns a

message box.

As with all things COM-related, we were then off to the registry to build out all of the keys needed to get our

handler running on the host. Again, Microsoft’s documentation helped quite a bit here, but we weren’t sure what

was an actual requirement versus a best practice. What we found was that the following registry keys and values

https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers
https://github.com/microsoft/Windows-classic-samples/tree/27ffb0811ca761741502feaefdb591aebf592193/Samples/Win7Samples/winui/shell/appshellintegration/RecipePreviewHandler
https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers#preview-handler-architecture

5/9

were required in order for our test message box to pop up:

At this point, we had a functioning minimal POC of the preview handler targeting .SPECTEROPS files from which

we could build our capability.

Leaving Low IL

The biggest hurdle with this technique is that, by default, preview handlers are run in a low integrity instance of

PREVHOST.EXE . This means that even though we can get code execution, our token’s integrity level (IL) will limit

us from accessing important parts of the operating system in the context of post-exploitation activities.

Thankfully for us, Microsoft realized that there are plenty of cases where running in low IL just won’t work for

some developers (e.g. needing to save a file to a directory marked with medium integrity label). To support these

use cases, developers are allowed to opt out of the low IL isolation behavior and instead be hosted in a medium IL

instance of the PREVHOST.EXE surrogate process. In order to opt out, Microsoft instructs developers to create a

new value, DisableLowILProcessIsolation , under HKCR\CLSID\{PREVIEW-HANDLER-CLSID} and set the

value to 1 .

Because HKCR is really just a combination of HKCU\Software\Classes and HKLM\Software\Classes , the

developer should theoretically be able to register the preview handler under the context of the current user by

creating the required registry keys and setting the values under HKCU . Then their handler will be executed in a

medium IL surrogate whenever the user previews their chosen file type. We tested this assumption by adding the

DisableLowILProcessIsolation value to the preview handler we had previously registered. After setting the

value and refreshing the preview pane, we found that we were still running in low IL.

To try to figure out what was going on, we opened up Procmon and set a filter for registry operations whose path

ended with DisableLowILProcessIsolation . We refreshed the preview pane but didn’t see anything. After

trying a few other file types, Procmon eventually caught EXPLORER.EXE querying the value of this key. The call

stack for this event can be seen below.

https://docs.microsoft.com/en-us/windows/win32/secauthz/mandatory-integrity-control#integrity-labels
https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers#server-model-options

6/9

We replaced the original message

box with one which shows the

token’s integrity level

Procmon’s symbol resolution is a little off here. Frame 7 (SHELL32!SHBrowseForFolder+0x63b) is the most

interesting for us as it resolves to an address inside of the function SHELL32!DoesExtensionOptOutOfLowIL .

The disassembly of this function can be seen below.

Looking at the disassembly, it immediately became clear what was going wrong — only values in keys under HKLM

are checked. This means that not only are our hopes of dropping per-user persistence dead, but because HKLM is

only writable by administrators, we can’t even get around the low IL isolation as a normal user. We explored

Microsoft’s directions for providing a separate surrogate process to host our handler, but ultimately that effort

failed as those processes also spawns as low IL.

https://docs.microsoft.com/en-us/windows/win32/shell/preview-handlers#providing-your-own-process-for-a-preview-handler

7/9

Although this wasn’t the ideal outcome, we still had a persistence mechanism with which we could host our code

inside of a Microsoft-signed executable. Because of the privileges required, this will rarely see any use on initial

compromise and instead will be used later in the attack chain as we gain more privileged footholds in the

environment. Additionally, because we’re targeting HKLM , all users of the system will be affected and not just the

current user.

Operationalization

In order to take full advantage of this technique, our tooling is broken up into three distinct components — a

payload, a target file, and a dropper.

The handler DLL which will be loaded in the surrogate and begin executing our malicious code. This is

dropped to disk in a user-defined location.

Any file with an extension matching the one we’ve set up our handler for. This is also dropped to disk in an

arbitrary location, but one where the user will likely browse with Explorer.

The runner function inside of the handler was swapped from the testing message box to a shellcode runner. While

we’ll leave this as an exercise to the reader, there are a few hang-ups with this technique that are worth covering.

1. Explorer must restart after programmatically enabling the preview pane or the handler won’t fire

2. Some type of mutex is needed as multiple instances of the handler can spawn unexpectedly and you’ll be

flooded with agents

3. Existing handler can be hijacked relatively seamlessly, but reverting the change isn’t always as simple as it

appears due to differences in implementations (e.g. Word uses different ProgIDs based on the file extension

instead of CLSIDs)

Proof of Concept

Detection

Detection of this technique relies heavily on monitoring changes to the registry. During our development of this

technique, we identified the base conditions for implementing a handler for persistence. While there are a good

amount of constants that we can monitor, this technique provides the actor with many chances to subvert

detection logic (e.g. using ProgIDs instead of CLSIDs). We’ll first highlight the conditions from which a basic

detection can be built and then discuss some of the qualifying conditions that can be used to make the detection

more robust.

An important observation identified is that actors are not required to implement a preview handler for new file

extensions and can just as easily hijack existing handlers following roughly the same methodology.

Base Conditions

In order for this technique to both function and be useful for attackers (i.e. not executing in low IL), we can focus

our attention on a few specific registry keys while building out the base detection.

The first and most important event to monitor for the base detection is the value

DisableLowILProcessIsolation being set to 1 in any key in HKLM\Software\Classes\CLSID* . This key

must be set in HKLM in order for the surrogate process to be launched in medium IL, allowing the actor to interact

with the compromised host as a normal user. While the scope of this event is relatively large, we found that

instances of this value being set are exceedingly rare during our testing.

https://posts.specterops.io/thoughts-on-detection-3c5cab66f511#:~:text=Finding%20the%20Base%20Condition

8/9

The second registry key to target as part of the detection is HKCR\Software\Classes*\ShellEx\{8895b1c6-

b41f-4c1c-a562–0d564250836f} . The creation of this key is a base condition of installing any preview handler

on the system. This can be for any filetype, including both existing or new extensions, but it must be set. Note that

it is important to use the wildcard filter as written and not to scope it as .* in an attempt to restrict detections to

only file extensions. This because filetypes (e.g. .foo) in the registry can be associated with ProgIDs (e.g. foo)

which function the same in the context of this technique.

The final base condition is adding the CLSID of the preview handler as a value to the

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers key for per-user installation or

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers for all users. This value will specify

the friendly name of the preview handler for debugging but it is not required to be set.

Classifying Conditions

While the base conditions provide a minimal amount of events which can be used to identify the installation of

preview handlers, there are a number of others that can provide supplemental context to the base detection, are

conditional, or may aid in an investigation.

The first of these conditions is that Explorer’s preview pane must be enabled. This is a requirement for this

technique to work. This should be considered an optional event because the victim may already have enabled this

feature, meaning that a registry event won’t occur. Normally disabled by default, enabling the preview pane can

provide a consistent choke point where we can observe an actor enabling it manually. To do this, we can monitor

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Modules\GlobalSettings\DetailsContainer

for the DetailsContainer value being set to 02 00 00 00 01 00 00 00 and

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Modules\GlobalSettings\Sizer for the

value of DetailsContainerSizer being set to 15 01 00 00 01 00 00 00 00 00 00 00 6d 02 00 00 .

These keys should only be set by EXPLORER.EXE under normal conditions.

Another event which can provide additional context is the surrogate process being set. This process is

PREVHOST.EXE under normal conditions, but the actor may register their own on the system to allow for a custom

application to handle the preview such as in the instance of a managed handler which needs to load a specific

version of the Common Language Runtime (CLR). This provides a valuable way for an actor to evade process or

image-based detections. This AppID should be set in HKLM\Software\Classes\CLSID* as the value AppID . If

the default PREVHOST.EXE is to be used, this should be {6d2b5079–2f0b-48dd-ab7f-97cec514d30b} for x64

handlers or {534a1e02-d58f-44f0-b58b-36cbed287c7c} for x86 handlers running on an x64 host. If the actor

opts to use their own surrogate application, a key HKLM\Software\Classes\AppId* must be created with the

value DllSurrogate set to the path of their custom application. Regardless of the surrogate process, it will

always be launched with the command line arguments {MALICOUS-HANDLER-CLSID} -Embedded where the

CLSID is that of the registered handler DLL.

The final piece which could provide value, especially during an investigation, is the registration of the preview

handler DLL itself. This will be set as the default value in HKLM\Software\Classes\CLSID*\InProcServer32

and will point to a path on disk. It is worth noting that this event can be relatively noisy compared to the other

events generated by usage of this persistence technique. Additionally, this file doesn’t have to exist at the time of

installation and can be dropped whenever the actor is ready to operationalize the persistence mechanism.

Detection Operationalization

In testing the detection piece of this persistence technique, we stood up a Microsoft Defender instance in which we

ran a number of Kusto queries containing the base condition syntax listed above. We wanted to highlight the

following blindspots that we believe are inherent to Microsoft Defender’s default filtering configurations, and are

worth considering when building and tuning a MDE detection in your environment:

9/9

—This prevented us from detecting the specific DisableLowILProcessIsolation registry value set to 1 as

part of the first base detection. We were able to detect automatic changes in this registry key, such as benign

changes from MSIEXEC.EXE .

— Since HKCR is a combination of the HKLM and HKCU hives, which MDE does log, the root cause of this

visibility gap is unknown at the time of this post. This gap prevents the second base condition key,

HKCR\Software\Classes*\ShellEx\{8895b1c6-b41f-4c1c-a562–0d564250836f} , from being detected

in MDE.

— This exists in either registry key

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers or

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PreviewHandlers . This gap prevents the third

base condition from being detected as written in MDE.

With Microsoft Defender’s current log forwarding gaps, detection engineers will have the most success

corroborating high-level detections and pivoting to investigate suspicious activity. Below is a starting query that

detects one of the classifying conditions, the registration of the preview handler DLL itself in the

HKLM\Software\Classes\CLSID*\InProcServer32 key (Note: the exclusions included were specific to our

test environment and would need further tuning depending on your organization’s environment):

DeviceRegistryEvents| where RegistryKey has @”HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\” and RegistryKey
endswith “InProcServer32”| where InitiatingProcessFileName !in (“setup.exe”, “wzpreviewer65.exe”,
“winzip64.exe”,
“msiexec.exe”,”wzpreviewer64.exe”,”wzbgtcomserver64.exe”,”msmpeng.exe”,”microsoftedgeupdatecomregistershel
project Timestamp, DeviceName, ActionType, InitiatingProcessFileName, RegistryKey, RegistryValueType,
RegistryValueName, RegistryValueData, InitiatingProcessParentFileName, InitiatingProcessCommandLine

This detection example will detect the following Registry Keys:

And the following Registry Value Data and Command Line activity:

Further research is needed to determine whether or not a viable detection could be built querying Sysmon logs or

Windows Registry events.

Acknowledgements

Thank you to Casey Smith for giving us the tip to explore preview handlers in the first place. Thank you to Dwight

Hohnstein for collaborating with us to turn the handler into something usable.

https://twitter.com/subTee
https://twitter.com/djhohnstein

